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First-principles calculations of the spin-orbit coupling in graphene with hydrogen adatoms in dense and

dilute limits are presented. The chemisorbed hydrogen induces a giant local enhancement of spin-orbit

coupling due to sp3 hybridization which depends strongly on the local lattice distortion. Guided by the

reduced symmetry and the local structure of the induced dipole moments, we use group theory to propose

realistic minimal Hamiltonians that reproduce the relevant spin-orbit effects for both single-side semi-

hydrogenated graphene (graphone) and for a single hydrogen adatom in a large supercell. The principal

linear spin-orbit band splittings are driven by the breaking of the local pseudospin inversion symmetry and

the emergence of spin flips on the same sublattice.
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Spin-orbit coupling is central for a variety of spintronics
phenomena [1,2] such as spin relaxation, spin transport, or
topological quantum spin Hall effects. Itinerant electrons
in graphene have weak spin-orbit coupling, as they are
formed primarily from pz orbitals which have zero orbital
momentum. The Dirac cones are separated by what is
called the intrinsic spin-orbit coupling of 2�I ¼ 24 �eV
due to pz-d mixing [3–6]. This small value is desirable for
long spin lifetimes, but experiments suggest [7–10] that
spin relaxation is governed by either much stronger spin-
orbit or magnetic [11,12] interactions. Potential culprits are
light adatoms [13–16], which are typically not important
for momentum scattering but may be essential for spin-flip
scattering. On the other hand, large spin-orbit coupling is
important for the spin Hall effect [17] and for engineering
robust quantum topological phases in graphene by heavy
adatoms [18–20].

Hydrogen is an ideal light adatom to study induced
spin effects in graphene. Not only can it produce local
magnetic moments [21–24], as recently experimentally
demonstrated [25], but it should also enhance graphene’s
spin-orbit coupling (SOC), as proposed in Ref. [13]. We
show that while the general reason for the enhancement is
sp3 hybridization, specifically, the principal enhancement
appears due to pseudospin inversion asymmetry (PIA),
which generates novel spin-orbit couplings for conduction
electrons.

The presence of both magnetic moment and large spin-
orbit coupling makes the spin physics exciting but also
challenging to explain spin-relaxation experiments (such
as the recently observed increase in the spin-relaxation
time due to hydrogenation [26]). To disentangle the two
contributions, as well as to see what new phenomena they
can lead to, it is important to consider them separately.
Here, we present a quantitative and qualitative study of
SOC induced by hydrogen on graphene in two limits.
One is the dense limit, represented here by single-side
semihydrogenated graphene (also called graphone) [27].

This structure is relatively simple and allows for a quanti-
tative analysis of the sp3 hybridization effects on various
spin-orbit parameters. Our results indeed show a giant
enhancement of SOC, strongly dependent on the buckling
deformations of this structure. We introduce single-band
and tight-binding Hamiltonians to describe the main SOC
effects.
We also quantify the local spin-orbit structure and

propose a minimal realistic SOC Hamiltonian in the dilute
limit, represented by large supercells (starting with 5� 5),
intensively studied for orbital effects [28–31]. Based
on first-principles calculations, we demonstrate a giant
local—and we identify the local impurity region from the
dipole moments distribution—enhancement of SOC due to
sp3 hybridization and formulate a minimal realistic SOC
hopping model for the first time. We believe that this is a
benchmark model to study spin relaxation, spin transport,
but also mesoscopic quantum interference [11,32] phe-
nomena in which spin-flip and spin-orbit scattering play
an important role. Our results are in general agreement with
the finding of the recent experiment on the spin Hall effect
in hydrogenated graphene [17] in which large spin-orbit
coupling was deduced. The present theory gives founda-
tions to study such phenomena in a quantitative way.
Dense limit: Single-side semihydrogenated graphene

(SHG).—The effects of sp3 hybridization on SOC are
studied using single-side semihydrogenated graphene
[inset in Fig. 1(a)] with different degrees of out-of-plane
lattice distortion � of the hydrogenated carbon site which
is on sublattice A. The C-H bond length dH is 1.13 Å, and

we take the lattice constant to be a � 2:516 �A, which is the
relaxed distance between the nearest neighbors at the
adatom site in a 5� 5 supercell discussed below; in gra-
phene, the lattice constant is 2.46 Å. (The relaxed SHG
structure of lattice constant 2.535 Å would have �=a ¼
9:7% and the sp3 tetrahedron 20.41%.) In examples, we
choose �=a ¼ 14%, which corresponds to relaxed large
supercell structures.
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To study SOC effects, we restrict the computational basis
to be spin unpolarized. The calculated electronic structure
and the projected local density of states for SHG are shown
in Fig. 1 (top) for �=a ¼ 14%. Compared to graphene, in
which � and �� bands without SOC touch at K [33], the
C-H bonding pulls them apart: the � band, which at K
comes mainly from sublattice A, is shifted to about 5 eV
below the Fermi level (the GW approximation predicts a
greater shift by about 2 eV [22]). The�� band, which comes
from sublattice B, lies at the Fermi level. This band, which
we consider for our SOC analysis, is narrow since the
nearest-neighbor hopping is inhibited for pz electrons on
B. The inset in Fig. 1(a) shows the�� probability density at
K that has the pz character on sublattice B.

We now extract the SOC parameters for the states at K
and � for the �� band which is at the Fermi level. Since
this band is nondegenerate, the effective spin-orbit
Hamiltonian can be expressed via the spin Pauli matrices
ŝ. The small group of K (�) is C3 (C3v). Up to terms linear
in momentum, which is here measured from K and �, the
SOC Hamiltonians compatible with those symmetries are

H �K
eff ¼ �K

BRðkxŝy � kyŝxÞ þ ��Iŝz; (1)

H �
eff ¼ ��

BRðkyŝx � kxŝyÞ: (2)

Here, � ¼ 1 (� 1) stands for K (K0), �I is the adatom-
modified intrinsic spin-orbit coupling, and �BR is the
adatom-induced (Bychkov-Rashba-like, as in semiconduc-
tor physics [34]) spin-orbit coupling. We will see that the
latter comes from the space and pseudospin inversion
asymmetry. Contrary to graphene, the BR SOC at K
depends on the momentum magnitude. Higher-order terms
in H �K

eff and H �
eff are presented in [35].

Figure 1 (bottom) shows the extracted SOC parameters
as functions of �=a. The intrinsic SOC �I is obtained from
the splitting of the band at K; see the inset in Fig. 1(c). The
parameter �K

BR is extracted by fitting the linear dependence
of the ratio of the spin-expectation values hŝxi=hŝzijkx¼0 ¼
�K
BRky=�I þOðk3yÞ close to K. The trigonally warped spin

texture around K is shown in the inset of Fig. 1(d) and can
be described by higher-order terms in H �K

eff [35]. Finally,

��
BR is obtained by fitting the spin splitting at �; see the

inset in Fig. 1(e). SOC is significantly enhanced in
comparison to graphene. Directly comparable is the intrin-
sic SOC parameter whose value in graphene is 2�I ¼
24 �eV [3].
The above single-band model can be obtained from a

tight-binding (TB) Hamiltonian using the carbon pz and
hydrogen s orbital basis. The Hamiltonian contains orbital

and SOC parts H ¼ H orb þH so. We denote by cyi� ¼
ðayi�; byi�Þ and ci� ¼ ðai�; bi�Þ the creation and annihilation
operators for the pz orbitals on the sublattices (A, B), with

spin � and lattice site i. Similarly, we define hym� and hm�

for the hydrogen s orbitals on adatom sites m. For the
orbital part H orb, we take the TB model Hamiltonian
introduced in Refs. [30,36], which assumes the nearest-
neighbor carbon-carbon (C-C) hopping t ¼ 2:6 eV, direct
carbon-hydrogen (C-H) hopping T, and the adatom on-site
energy "h:

H orb ¼ "h
X
m

hym�hm�� t
X
hi;ji

cyi�cj�þT
X
hm;ii

hym�ci�þH:c:

(3)

The angle brackets denote the nearest neighbors. Fitting
the TB model to the first-principles band structure for
�=a ¼ 14% (distortion in the single-adatom limit, see
below), we obtain "h ¼ 3 eV and T ¼ 6:5 eV. The values

FIG. 1 (color online). Top: Calculated electronic band struc-
ture of single-side semihydrogenated graphene. (a) Sublattice
resolved band structure for the distortion �=a ¼ 14%. The filled
(red) circles correspond to sublattice A, whereas the open (blue)
circles correspond to sublattice B. The circles’ radii correspond
to the carbon atom charge densities. The inset shows the struc-
ture and the probability density of the flat band at the K point.
(b) Orbital resolved local density of states (LDOS). Bottom:
Extracted spin-orbit coupling parameters for the �� band at K
and � as functions of �=a. (c) Intrinsic spin-orbit coupling
splitting 2�I at K. The inset shows the band splitting.
(d) Adatom-induced SOC splitting �K

BR at K. The inset shows

the spin texture around K for the lower spin-orbit split band. The
in-plane components are shown by the arrows, while the z
component is shown by the color map. (e) Adatom-induced
SOC splitting ��

BR at �. The inset shows the band splitting

around � with the identified Bychkov-Rashba energy EBR ¼
0:87 �eV for �=a ¼ 14%.
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are reliable in the vicinity of the K point, where pz carbon
orbitals dominate the projected local density of states.

The SOC Hamiltonian can be derived by inspecting
the reduction of the graphene point group symmetry
D6h—which allows for the intrinsic spin-orbit coupling
�I only—to the one corresponding to SHG. First, the
C-H covalent bonds break the space inversion symmetry
and the point group reduces toC6v. This structure inversion
asymmetry induces the Bychkov-Rashba-like term �BR.
Second, the hydrogenated carbons on sublattice A cannot
be interchanged with the nonhydrogenated carbons on
sublattice B. This breaks the pseudospin inversion symme-
try, and C6v ! C3v. The effect of the latter reduction is
twofold: (i) The intrinsic SOC depends on the sublattice
�A

I and �B
I , and (ii) new SOC terms emerge due to the

pseudospin inversion asymmetry �A
PIA and �B

PIA discussed
below.

As the hydrogen s orbitals do not directly contribute to
SOC, we can express the SOC TB Hamiltonian in the pz

basis. In the next-nearest-neighbor limit, this Hamiltonian
has five real parameters and reads

H so ¼ 2i

3

X
hi;ji

cyi�cj�0 ½�BRðŝ� dijÞz���0

þ i

3

X
hhi;jii

cyi�cj�0

�
�c

Iffiffiffi
3

p �ijŝz þ 2�c
PIAðŝ�DijÞz

�
��0

:

(4)

The double angular brackets stand for the next-nearest
neighbors, and the label c denotes sublattice A or B.
Factors �ij ¼ 1 (� 1) stay for the clockwise (counter-

clockwise) hopping path j to i. The nearest-neighbor dij

and next-nearest-neighborDij unit vectors point from j to i

(in a flat lattice). The first term in Eq. (4) is the standard
Bychkov-Rashba hopping as for graphene. The second
term describes the sublattice resolved intrinsic SOC which
couples the same spins and the PIA term which couples
opposite spins on the same sublattice. The Hamiltonian
H so in Eq. (4) applies to any hexagonal lattice system with
C3v point group symmetry, such as boron nitride or silicene
in a transverse electric field.

The single-band limit described by Eq. (1) can be
obtained from the TB Hamiltonian H ¼ H orb þH so

by downfolding to sublattice B; for a general perturbative
downfolding scheme, see [37]. In our case, it can be done

in two steps; getting rid of the hydrogen s orbitalsH orb þ
H so ! P

iðT2="hÞayi�ai� � t
P

hi;jic
y
i�cj� þH so; in ef-

fect, the sublattice A acquires a staggered on-site potential.
When transforming this downfolded Hamiltonian to the
carbon atom Bloch basis, we get an effective 4� 4 Bloch
Hamiltonian. Repeating now the downfolding procedure
with sublattice A states, we arrive at the 2� 2 Hamiltonian
H effðkÞ. Expanding H effðkÞ near the K (K0) point gives
in the leading order H �K

eff [see Eq. (1)], with

�K
BR ’ �a�B

PIA � ffiffiffi
3

p
a�BR

t"h
T2

; (5)

�I ’ ��B
I � 2

�2
BR"h
T2

: (6)

Both PIA and BR SOC hopping terms contribute to the
effective band SOC parameters. This is the likely reason
for the extracted nonmonotonic dependence of �I and
the decrease of �K

BR as a function of �=a, shown in
Fig. 1 (bottom). The TB model cannot be reliably used at
� as there other bands (orbitals) mix in; see Fig. 1(a) and
Ref. [35].
We also present an effective SOC Hamiltonian close

to K. After transforming H so to the ordered Bloch
basis ½c A"ðkÞ; c A#ðkÞ; c B"ðkÞ; c B#ðkÞ� and linearizing near

K (K0), we obtain

H �K
so ¼ �BRð��̂xŝy � �̂yŝxÞ þ 1

2½�AþB
I �̂z þ�A�B

I �̂0��ŝz
þ 1

2½�AþB
PIA �̂z þ�A�B

PIA �̂0�aðkxŝy � kyŝxÞ: (7)

Here, (�̂0, �̂) and (ŝ0, ŝ) stand for the unit and Pauli
matrices in the pseudospin and spin spaces, respectively.
The momentum is measured form K (K0) and parameters
�A�B ¼ �A ��B. If z-inversion symmetry is restored,
�BR, �

AþB
PIA , and �A�B

I vanish and one obtains the silicene
limit [38].
Hydrogen on a supercell: Single-adatom limit.—The

single-adatom limit is represented by a 5� 5 supercell
with a single hydrogen (2% coverage). We use a fully

relaxed structure with � � 0:36 �A (14% distortion) and

the next-nearest-neighbor distance a ¼ 2:516 �A of the
carbon atoms around the hydrogenated site CH.
Figure 2(a) shows the calculated spin-unpolarized

electronic band structure of our 5� 5 supercell. The low
energy spectrum contains three characteristic bands: the
valence and conduction bands and the midgap impuritylike
band. These three bands can be nicely fitted by two
parameters T ¼ 7:5 eV and "h ¼ 0:16 eV entering the
HamiltonianH orb [Eq. (3)], as seen in Fig. 2(a). Our values
differ from Refs. [30,36]; the comparison is discussed in
[35]. Larger supercells are also well described by these
parameters, confirming that the 5� 5 one already describes
the dilute limit; see [35]. The TB model with s and pz

orbitals is also supported by the projected pz local density
of states per carbon atoms around the hydrogenated carbon
as compared to the total density of states; see Fig. 2(b).
The calculated spin-orbit splittings are shown in

Fig. 2(c). To explain them, we propose a minimal realistic
SOC model which is locally C3v invariant in the impurity
region with the C-H bond as the threefold axis of symme-
try. We deduce the impurity region from the induced dipole
moments, shown in Fig. 3(a). The main effects are confined
up to the second-nearest neighbors of the hydrogenated
site CH (in sublattice A), defining our impurity region.

We use Ay
� (A�) for the creation (annihilation) operators
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on CH and By
m;� (Bm;�) on the three nearest neighbors.

Otherwise, the terminology follows the SHG case. The
SOC Hamiltonian compatible with the local symmetry is

H so ¼ i

3

X0

hhi;jii
cyi�cj�0

�
�Iffiffiffi
3

p �ijŝz

�
��0

þ i

3

X
hhCH;jii

Ay
�cj�0

�
�Iffiffiffi
3

p �CH;jŝz

�
��0

þ H:c:

þ 2i

3

X
hCH;ji

Ay
�Bj�0 ½�BRðŝ� dCH;jÞz���0 þ H:c:

þ 2i

3

X
hhi;jii

By
i�Bj�0 ½�PIAðŝ�DijÞz���0 : (8)

The first term is the graphene intrinsic SOC (2�I ¼
24 �eV). It couples all next-nearest-neighbor pairs not
containing CH. (This is denoted by the primed summation
symbol.) The second term describes the adatom-induced
intrinsic spin-orbit coupling �I, which couples the same
spins on the same sublattice. The third term, with the
Bychkov-Rashba hopping parameter �BR, describes the
induced nearest-neighbor spin flips. Finally, the fourth
term, with the PIA parameter�PIA, comes from the pseudo-
spin inversion asymmetry. This term couples opposite spins
of the next-nearest neighbors. We remark that C3v symme-
try allows more spin-orbit hopping terms in our impurity

region.We considered them all but found only the three�’s
in Eq. (8) relevant to explain our ab initio results; see the
scheme in Fig. 3(b).
Figures 2(c)–2(e) show spin-orbit coupling induced band

splittings along high-symmetry lines. The multiband least-
squares fit around theK point gives the following values for
the SOC parameters: �I ¼ �0:21 meV, which is about 17
times larger than that of graphene �I; �BR ¼ 0:33 meV,
more than 60 times the value in graphene where �BR ¼
5 �eV in a representative transverse electric field of
1 V=nm [3]; and �PIA ¼ �0:77 meV, which has no coun-
terpart in flat graphene. The signs of the above parameters

FIG. 3 (color online). (a) First-principles calculations of elec-
tric dipole moments induced by hydrogen adatoms on a 5� 5
supercell. The directions of the dipole moments are shown by
arrows; the sphere radii correspond to the dipole magnitudes.
(b) Hopping scheme of the tight-binding model showing the
relevant orbital and spin-orbit coupling parameters.

FIG. 2 (color online). First-principles results and their tight-binding model fits for a hydrogen adatom on a 5� 5 supercell.
(a) Electronic band structure around the Fermi level. The dots are first-principles results, and the solid lines are tight-binding model
fits. The band spin-orbit splitting around K is sketched for the valence band, indicating the out-of-plane z components and the rotation
directions of the in-plane spin components. (b) Broadened total density of states per atom (gray areas) and pz projected local densities
for atoms in the vicinity of the adatom: CH the hydrogenated carbon atom (shown in green), Cnn its nearest neighbor (in dark blue),
Cnnn the next-nearest neighbor (in light blue), and the total density on hydrogen H (in red). The projected densities of states are
normalized to the corresponding number of atoms in the set. (c) Conduction, (d) impurity, and (e) valence band spin-orbit splittings
along the high-symmetry lines; the symbols are as in (a). Tight-binding model least-squares fits are performed within the shaded
regions around K. (f) Spin-expectation values around K for the spin-orbit split valence and conduction bands closer to the Fermi level.
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have been determined from the spin-expectation values
around the K point, shown in Fig. 2(f). The spin texture is
governed mainly by PIA SOC. Those parameters also fit
larger supercells [35], and we propose them, together
with Hamiltonian Eq. (8), to describe the single adatom
limit important for investigating spin-flip and spin-orbit
scattering in graphene. Our parameters roughly agree
with the extracted value of (some effective) spin-orbit cou-
pling in hydrogenated graphene of 1.25 eV [17], but the
presence of PIA suggests that the modeling of spin Hall and
spin-relaxation effects in hydrogenated graphene needs
refining.

In conclusion, we investigated spin-orbit coupling
induced by hydrogen, representing light adatoms, on gra-
phene in dense and dilute limits. We introduced realistic
spin-orbit coupling model Hamiltonians and provided
quantitative values for their parameters that can be used
to study spin relaxation, spin transport, and mesoscopic
transport in graphene with adatoms or in similar two-
dimensional structures of the same symmetry.

We thank T.O. Wehling for helpful discussions. This
work was supported by the DFG SFB 689, SPP 1285, and
GRK 1570.
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Fal’ko, Phys. Rev. Lett. 101, 196803 (2008).

[31] T.O. Wehling, S. Yuan, A. I. Lichtenstein, A.K. Geim, and
M. I. Katsnelson, Phys. Rev. Lett. 105, 056802 (2010).

[32] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 108, 166606
(2012).

[33] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[34] Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).
[35] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.110.246602 for
details of first-principles calculations and single-band
spin-orbit Hamiltonian derivation.

[36] T.O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein,
Phys. Rev. B 80, 085428 (2009).

[37] G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced
Effects in Semiconductors (Wiley, New York, 1974),
Chap. 3.

[38] C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430
(2011).

PRL 110, 246602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
14 JUNE 2013

246602-5

http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.2478/v10155-010-0086-8
http://dx.doi.org/10.1103/PhysRevB.80.235431
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevB.85.115423
http://dx.doi.org/10.1103/PhysRevB.85.115423
http://dx.doi.org/10.1103/PhysRevB.82.125424
http://dx.doi.org/10.1038/nature06037
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRevLett.107.047206
http://dx.doi.org/10.1038/ncomms1986
http://dx.doi.org/10.1103/PhysRevLett.110.156601
http://dx.doi.org/10.1103/PhysRevLett.110.156601
http://dx.doi.org/10.1103/PhysRevB.86.045436
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevB.80.041405
http://dx.doi.org/10.1103/PhysRevB.80.041405
http://dx.doi.org/10.1088/1367-2630/14/3/033015
http://dx.doi.org/10.1103/PhysRevLett.110.156602
http://dx.doi.org/10.1103/PhysRevLett.110.156602
http://dx.doi.org/10.1038/nphys2576
http://dx.doi.org/10.1103/PhysRevB.82.161414
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevLett.108.056802
http://dx.doi.org/10.1103/PhysRevLett.101.037203
http://dx.doi.org/10.1103/PhysRevB.82.153404
http://dx.doi.org/10.1103/PhysRevB.82.153404
http://dx.doi.org/10.1103/PhysRevB.85.115405
http://dx.doi.org/10.1103/PhysRevB.85.115405
http://dx.doi.org/10.1103/PhysRevLett.107.016602
http://dx.doi.org/10.1103/PhysRevLett.107.016602
http://dx.doi.org/10.1103/PhysRevLett.109.186604
http://dx.doi.org/10.1103/PhysRevB.87.081402
http://dx.doi.org/10.1021/nl9020733
http://dx.doi.org/10.1103/PhysRevLett.92.225502
http://dx.doi.org/10.1103/PhysRevLett.92.225502
http://dx.doi.org/10.1103/PhysRevLett.96.036801
http://dx.doi.org/10.1103/PhysRevLett.96.036801
http://dx.doi.org/10.1103/PhysRevLett.101.196803
http://dx.doi.org/10.1103/PhysRevLett.105.056802
http://dx.doi.org/10.1103/PhysRevLett.108.166606
http://dx.doi.org/10.1103/PhysRevLett.108.166606
http://dx.doi.org/10.1103/PhysRev.71.622
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.246602
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.246602
http://dx.doi.org/10.1103/PhysRevB.80.085428
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1103/PhysRevB.84.195430

