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Probing a Liquid to Glass Transition in Equilibrium
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We use computer simulations to investigate the static properties of a simple glass-forming fluid in
which the positions of a finite fraction of the particles have been frozen. By probing the equilibrium
statistics of the overlap between independent configurations of the liquid, we find strong evidence that this
random pinning induces a glass transition. At low temperatures, our numerical findings are consistent with
the existence of a random first-order phase transition rounded by finite size effects.
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Experiments allow us to measure the increase of the
viscosity of liquids approaching the glass transition over
more than 15 decades. Despite this broad range, it is at
present not known whether this phenomenon is controlled
by an underlying phase transition, or whether relaxation
times progressively increase down to zero temperature [1].
There is not even agreement on the microscopic mecha-
nisms at work, despite the fact that glassy dynamics is
commonly observed in a large variety of materials, from
simple liquids, network forming liquids, to soft and bio-
logical matter [2]. Because supercooled liquids inevitably
fall out of equilibrium at the experimental glass tempera-
ture T,, amorphous solids form without encountering any
singularity.

The existence of a thermodynamic transition at a finite
temperature Tx < T, is highly debated [2]. Such a singu-
larity was first discussed by Kauzmann [3] who pointed
out that experimental data for the configurational entropy
extrapolate to zero at Tk, the “Kauzmann temperature.”
This implies that for 7 > Tk there exist exponentially
many (in the number of particles) equilibrium states
(neglecting vibrations), whereas below Ty this number
becomes subexponential and the system forms an “ideal”
glass. This view is supported by the analysis of the T
dependence of the relaxation times, which seem to diverge
at a temperature T, >0 = T [4]. However, so far T,
and T have been determined only by uncontrolled extrap-
olations of the behavior of macroscopic observables, thus
leaving much room for debate [5,6].

The existence of a true liquid-glass phase transition is
appealing from a theoretical perspective, since a number
of analytical results suggest the existence of a “random
first-order transition” (RFOT) occurring in glass-forming
materials [7,8], which provides a close connection to
Kauzmann’s entropy crisis. However, the mean-field start-
ing point of the RFOT, the technical difficulties posed
by finite-dimensional fluctuations [9,10], and the difficulty
to directly probe the microscopic foundations of the theory
explain why RFOT is only one among several theoretical
scenarios for the glass transition [2]. In the following
we demonstrate that it is indeed possible to make an
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equilibrium study of a liquid-glass transition whose nature
is very similar to the one possibly occurring at Tk in bulk
glass-formers [11,12]. This allows us to probe numerically
the nature of the phase transition and the microscopic
properties of the glass phase at thermal equilibrium with-
out any uncontrolled extrapolations.

We consider a binary mixture of harmonic spheres
[13,14] of diameter ratio 1.4 at density p = 0.675, which
we study using molecular dynamics [see Supplemental
Material (SM) [15] for methodological details]. This qua-
sihard sphere system is a good glass-former and can be
simulated efficiently. It has an onset temperature around
T,, = 10, and a mode-coupling temperature 7, = 5.2
[14]. All quantities are expressed in appropriate reduced
units (see SM [15]). To sample the equilibrium thermody-
namic properties of the system, we use replica exchange
molecular dynamics [16]. This numerical method enables
us to perform an efficient equilibrium sampling of the
configuration space in the NVT canonical ensemble. We
ensure thermalization and equilibrium sampling by requir-
ing that all particles move several times across the entire
simulation box for each state point and that all replicas
properly explore the configuration space. Within our simu-
lations, the system did not show any sign of crystallization.

Our central idea is to induce a glass transition by
increasing the strength of a random pinning field in a
thermalized dense liquid [11,12]. We first equilibrate the
liquid at a given temperature 7', before freezing perma-
nently the position of a certain set of particles. Among
various other pinning geometries [12,17,18], here we select
a finite concentration of particles, c. Working at constant
total number density p, we then study the equilibrium
properties of the model in the (¢, T) phase diagram. For
each state point, we average the results over independent
realizations of the random pinning field [17]. Intuitively,
pinned particles constrain the available phase space of the
remaining fluid particles, thus impacting their static and
dynamic properties. Indeed, we find that the dynamics
slows down dramatically with increasing c at constant T’
see Fig. SM1 [15]. While earlier studies had reported
similar slowing down [12,19-21], no direct equilibrium
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study of the liquid-glass transition with random pinning
has been reported (see Ref. [22] for a different type of
transition).

Note that freezing particles at the positions they occupy
at equilibrium does not perturb the interaction part of the
Hamiltonian. Indeed, any ensemble averaged static corre-
lation function measured in the pinned liquid takes the
same value as in the bulk system at ¢ =0 [17,23].
Theoretical studies have shown that increasing ¢ at low
enough temperature affects the configurational space in the
same way as decreasing temperature does for the bulk
liquid [11,24]. In particular, the RFOT occurring at 7%
for ¢ =0 becomes a transition line Tyx(c) = T% with
equivalent properties. Note that other types of pinning
fields [22,25,26] produce qualitatively different results,
because they perturb the Hamiltonian and possibly affect
the nature of the glass transition [24].

Figure 1 provides a qualitative illustration of our strat-
egy: An equilibrium glass state is obtained at constant
temperature, 7 = 4.8, if the concentration c is increased.
In these snapshots the large spheres are the pinned particles
in a typical realization of the disorder whereas the small
dots stem from the superposition of a large number of

overlap

FIG. 1 (color online). (a), (b): Large spheres represent pinned
particles (rescaled in size by a factor 0.5), small dots are the
superposition of the position of fluid particles obtained from a
large number of independent equilibrium configurations at 7 =
4.8 for ¢ = 0.0625 (a) and ¢ = 0.1875 (b). The total number of
particles is N = 64. (c) Average overlap (¢) as a function of
concentration ¢ of pinned particles for N = 64 and different
temperatures.

independent, equilibrium configurations visited by the
fluid particles. For ¢ = 0, the dots look like mist homoge-
neously filling the simulation box. For ¢ = 0.0625,
Fig. 1(a), the fluid particles are basically unconstrained
and still have access to a large number of distinct configu-
rations. Thus the dots form fuzzy clouds. An increase to
¢ = 0.1875, Fig. 1(b), condenses the dots into well-defined
patches, which represent the highly constrained positions
occupied by the free particles. This qualitative observation
illustrates that increasing c¢ leads to a collective localiza-
tion of the fluid particles. We emphasize that during the
replica exchange simulations, all fluid particles diffuse
and explore the entire simulation box. However, particles
move in such a way that collective density fluctuations are
frozen. Thus, the system is in a glass state characterized by
a frozen amorphous density profile [2].

We now study in more detail the transition between
the fluid and glass states. Figure 1 suggests that the number
of available states, and thus the configurational entropy,
considerably decreases with increasing c. A quantitative
determination of the configurational entropy is, however,
difficult and has several shortcomings [2]. Therefore we
use a microscopic order parameter to characterize the
transition from fuzzy clouds to small patches seen in
Fig. 1. An appropriate quantity is the overlap g,z measur-
ing the degree of similarity between two arbitrary configu-
rations « and B, which has been used in spin glass models
displaying a RFOT [7]. In practice, we discretize space into
cubic boxes of linear size £ = 0.55, and define nf-“) =1if
box i in configuration « is occupied by a particle, and

ng") = ( if not. Then,

— i % n(a)n(B) (1)
qaﬁ Nb P i i
where the sum runs over the N, boxes that do not contain
pinned particles. By definition ¢,, = 1, while a small
overlap is obtained for independent configurations (g ,,q =
0.11 = p£3 on average for an ensemble of independent
configurations). In the remainder of the paper, we charac-
terize the transition by analyzing the statistical properties
of the overlap for a broad range of control parameters.

In Fig. 1(c), we show the ¢ dependence of the average
overlap, (¢) = (qap), where the brackets stand for thermal
and disorder averages. Above the onset temperature, {q)
increases gradually with c¢. For T =< 8.0, the growth
remains modest at low ¢, but this initial regime is followed
by a rapid increase in the range (g) =~ 0.25-0.4. Finally, if
T is decreased even further this rapid growth occurs for
lower values of ¢ and becomes sharper. At 7 = 4.8 it is
sufficient to reach just ¢ = 0.11 to abruptly localize the
fluid particles, {g) > 0.5.

These observations show that at low T the glass state is
reached at a sharply defined ¢ value, whereas pinning acts
quite smoothly at high T. The T dependence of {(g) is
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consistent with the emergence of a discontinuous jump at
low temperatures, 7 < 8.0, but the relatively small system
size shown in Fig. 1(c), N = 64, will smear out such a
discontinuity. To overcome this difficulty we have deter-
mined the fluctuations of (g) and in Fig. 2 we show its
distribution function, P(g) = (6(q — qap))-

At high temperatures, T = 13 in Fig. 2(a), P(g) evolves
smoothly from distributions peaked at small ¢ for small ¢
to distributions peaked at large ¢ values at large c. This
is consistent with P(q) becoming a delta function for
N — o for all ¢, and with the smooth increase of
(¢) = [} P(q)qdq at high T shown in Fig. 1(c). A qualita-
tively different behavior is observed at low T’; see Fig. 2(b).
A narrow peak is still present for small and large ¢, but
P(q) is bimodal for intermediate c¢. The presence of two
peaks implies that it is equally probable that two indepen-
dent thermalized configurations are either very similar or
very different. The former situation is favored at larger ¢
because too few distinct configurations exist, while the
latter holds at small ¢ when the pinning field is not strong
enough to prevent the system from exploring a large
configuration space. Bimodal distributions of the order
parameter can be interpreted as the phase coexistence
between the low-g liquid and the high-g glass phases,
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FIG. 2 (color online). Probability distribution of the overlap,
P(g), for different values of the concentration of pinned particles
at high and low T [(a), (b), respectively]. Note the presence of a
double peak structure at low temperatures.

and the two-peak structure of P(g) is suggestive of a
first-order transition for the order parameter (g), rounded
by finite size effects.

To estimate the location of this putative transition, we
have measured various moments of the distribution P(q).
From the second moment (¢*) = [} P(q)g*dq, we define
the static susceptibility, y(c, T) = N(1 — ¢)[{g?) — {(g)*].
Figure 3(a) shows that at high temperatures y has a mild ¢
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FIG. 3 (color online). (a) The static susceptibility y as a
function of concentration ¢ for different temperatures. (b) ¢
dependence of the skewness y for different 7. (c) The equilib-
rium phase diagram determined from the position of the peak in
the susceptibility y and from the root of the skewness y showing
the location of the fluid and glass phases. Also included are
curves of constant relaxation time as determined from the self-
intermediate scattering function.
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FIG. 4 (color online). System size dependence of the overlap
distribution function for 7 = 5.5 and three values of ¢ below
(green), near (red), and above (blue) the transition for N = 64
(lines) and N = 128 (lines with symbols). The peak susceptibil-
ity increases from y = 1.8 for N = 64 to y = 2.7 for N = 128
(data not shown).

dependence, whereas it develops a well-defined peak for
T = 7.0 whose height and location, respectively, increases
and shifts to smaller ¢ if T decreases. The observed growth
of the peak x(c, T) atlow T is direct evidence of increasing
static correlations in the bulk system [12,27]. The location
of this peak allows us to estimate the value of the critical
concentration at the given temperature. Figure 3(b) shows
that an even more accurate location is obtained by consid-
ering the skewness y(c, T) of the distribution P(q), y =
{(g — (g /{(g — {g))*)*/%, since 7 crosses zero when the
distribution is symmetric, i.e., precisely at coexistence.
From the location of the peak in y(c, T) and the zero-
crossing point of y(c, T), we can locate the fluid-glass
coexistence line [Fig. 3(c)]. These two quantitative
estimates become reliable if 7 < 8.0, i.e., when bimodal
distributions are present, and we see that they agree with
each other within error bars (estimated using the jackknife
method). In the context of Fig. 3(c), the existence of a
Kauzmann temperature at ¢ = 0 would rely on extrapolat-
ing our finite c¢ transition points (determined without
extrapolation) to the limit ¢ — O.

Our results show that random pinning induces a glass
transition with nontrivial thermodynamic signatures that
are consistent with the existence of an equilibrium RFOT
[11]. However, since our results have been obtained for a
rather small system size, N = 64, they do not establish its
existence in the thermodynamic limit. Since the parallel
tempering algorithm becomes less efficient when N is
increased we cannot access very low T’s for larger N.
However we can investigate the N dependence at higher
T’s. Our results for larger systems confirm that no sharp
transition exists for 7 = 8.0, while we obtained clear signs
of enhanced bimodality and static susceptibility when
T < 6.0 (see Fig. 4 for T = 5.5). The small dip in P(g)
for N =64 and intermediate ¢ values becomes more

pronounced for N = 128, while the peaks at low and large
overlaps become sharper. Such system-size dependence is
typical of first-order transitions. A more extensive finite-
size scaling analysis would be useful, since it yields direct
microscopic insight into the surface tension between the
two phases, but is at present beyond the computational
means.

In contrast to conventional studies of the glass transition,
our approach allows us to study both liquid and glass
phases at thermal equilibrium, it does not require uncon-
trolled extrapolations, and we characterize the glass for-
mation by means of a microscopic order parameter. We
expect that similar results could be obtained with other
numerical models. Our work thus demonstrates the feasi-
bility of systematic equilibrium studies of the nature of the
liquid to glass transition. Also, by using optical tweezers it
will be possible to use this method to study colloidal
glasses and thus to produce experimentally what is often
considered as ‘“‘impossible-to-reach ideal glass states”
[28]. Random pinning in the context of granular glass
transitions [29,30] is another promising perspective.
Therefore our work opens the door for a new generation
of direct, systematic studies of the nature of the glass state
and for the production of novel amorphous materials.
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