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We study the nonequilibrium dynamics of a Tonks-Girardeau gas released from a parabolic trap to a
circle. We present the exact analytic solution of the many body dynamics and prove that, for large times
and in a properly defined thermodynamic limit, the reduced density matrix of any finite subsystem

converges to a generalized Gibbs ensemble. The equilibration mechanism is expected to be the same for

all one-dimensional systems.
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The nonequilibrium dynamics of isolated many body
quantum systems is currently in a golden age mainly due
to the experiments on trapped ultracold atomic gases [1-8]
in which it is possible to measure the unitary nonequilib-
rium evolution without any significant coupling to the
environment. A key question is whether the system relaxes
to a stationary state, and if it does, how to characterize from
first principles its physical properties at late times. It is
commonly believed that, depending on the integrability of
the Hamiltonian governing the time evolution, the behavior
of local observables can be described either by an effective
thermal distribution or by a generalized Gibbs ensemble
(GGE), for nonintegrable and integrable systems, respec-
tively (see, e.g., [9] for a review). While this scenario is
corroborated by many investigations [10-29], a few studies
[30-35] suggest that the behavior could be more compli-
cated and, in particular, can depend on the initial state.

In a global quantum quench, the initial condition is the
ground state of a translationally invariant Hamiltonian
which differs from the one governing the evolution by an
experimentally tunable parameter such as a magnetic field.
A different initial condition can be experimentally
achieved [7,8] by considering the nonequilibrium dynam-
ics of a gas released from a parabolic trapping potential.
It has been shown experimentally that the spreading of
correlations is ballistic for an integrable system and dif-
fusive for a nonintegrable one [8]. However, when the
gas expands in full space, for infinite time the gas clearly
reaches zero density (see, e.g., [35—40] for a theoretical
analysis) and it is rather confusing to distinguish thermal
and GGE states. To circumvent this, Caux and Konik [41]
have recently developed a new approach based on integra-
bility to study the release of the Lieb-Liniger Bose gas [42]
from a parabolic trap not in free space but on a closed circle
(as sketched in Fig. 1), so that the gas has finite density. It
has been numerically shown that the time averaged corre-
lation functions are described by a GGE, apart from finite
size effects [41]. A preliminary analysis for nonintegrable
models has also been presented [43]. However, while this
approach effectively permits one to calculate time-averaged
quantities for relatively large systems (the maximum

0031-9007/13/110(24)/245301(5)

245301-1

PACS numbers: 67.85.—d, 02.30.1k, 05.30.Jp, 67.10.—j

number of particles is N = 56 [41]), the study of the time
evolution is possible but much harder and it is difficult to
establish whether (and in which sense) an infinite time limit
exists.

In order to overcome these limitations, we present here a
full analytic solution of this nonequilibrium dynamics in
the limit of strong coupling, i.e., in the celebrated Tonks-
Girardeau regime [44]. We will show that, in a properly
defined thermodynamic (TD) limit, the reduced density
matrix of any finite subsystem converges for long times
to the GGE one. This implies that any measurable local
observable will converge to the GGE predictions.

Model and quench protocol.—We consider a one-
dimensional Bose gas with delta pairwise interaction and
in an external parabolic potential with Hamiltonian

Z w2x2 + cZE(x (1)

i#j

where ¢ > 0 is the coupling constant (we set 7 = m = 1).
The translationally invariant Lieb-Liniger model is
obtained for w = 0 and on a circle of length L with
periodic boundary conditions (PBC). While Ref. [41] cov-
ers numerically arbitrary ¢, to make an analytic progress
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FIG. 1 (color online). Left: Sketch of the trap release dynamic
in a circle. Right: Color plot of the numerical calculated density
evolution for N = 10, 100, oo (from left to right) at N/L = 1/2
and wN = 5.
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we consider the strong-coupling limit of impenetrable
bosons ¢ — o0, corresponding also to the low density n =
N/L < 1 regime for any c¢ [42].

For a trap release, the initial state is a Tonks-Girardeau
gas confined by a parabolic potential, i.e., the ground state
of Eq. (1) for a fixed w. Following [44], the many body
wave function for the ground state of N impenetrable
bosons is

\I’B(xl, ...,XN) = l_[Sgn(.Xj

i<j

- xi)\PF(xl’ cees XN): ()

where Wr(x, ..., xy) is the ground-state function of N
free fermions in the parabolic potential, i.e., the Slater
determinant det; ;x;(x;) with the eigenstates of the har-
monic oscillator

o
Xj(x) = e " 2H;(Jwx), 3)

777)
2/ jINT
and H;(z) the Hermite polynomials. In this fermionic lan-
guage, the time evolution governed by the Hamitonian (1)
with @ = 0 is obtained by expanding the one-particle
states in the free-wave basis, i.e. (k = 27m/L)

—lkx L)2 eikx
Xj('x) ZAI(/ \/— Ak,j = [L/Z dx)(j(x) E (4)

We now make the only crucial physical assumption: we
impose that the space initially occupied by the trapped gas
as a whole is within the external box of length L; i.e.,
before the quench the PBC are irrelevant for the gas which
only “sees” the parabolic trap. This condition is what
allows us to talk about release of the gas and requires the
number of particles N to be smaller than the first level of
the parabolic potential that is affected by PBC. In the TD
limit, for large quantum numbers, | yy (xx)|? is the semiclas-
sical probability density at the corresponding energy that
tends to zero for |x| > €/2 with € the classical cloud

dimension € = 24/2N/w. In simpler words, this means
that the classical extension of the gas in the trap € must
be smaller than the box size L.

To have a well-defined TD limit, we should consider N,
L — oo at fixed density n = N/L and, at the same time,
o — 0 with wN constant (fixed initial density), as in [41].
In terms of these quantities the gas release condition € < L
reads \/]_\75 > 2\/§n and the coefficients A;, jcan be calcu-
lated extending the integration in Eq. (4) to 00, obtaining

2
Ak,j = ij\/sz(k/w)- &)

Also, the infinite time limit should be handled with care.
Indeed, in this quench, a stationary behavior is possible
because of the interference of the particles going around
the circle L many times (see Fig. 1); i.e., to observe a
stationary value we must require vt > L (the speed of

sound is v = +/2wN in our normalization). This is very
different from equilibration in standard global quenches
where the time should be such that the boundaries are not
reached (see, e.g., [17]) in order to avoid revival effects. In
this problem the revival scale is ¢, « L? and so the infinite
time limit in which a stationary behavior can be achieved is
t/L — oo provided t/L* — 0. The importance of the TD and
long time limits to get a stationary behavior is already evident
from the time evolution of the density profile in Fig. 1.

One-particle problem.—In fermion language, the time-
dependent many body state is the Slater determinant of
the time evolved one-particle initial eigenfunctions [i.e.,
the solution of the Schrédinger equation id,®;(x, 1) =
Hp®;(x, 1) with ®;(x,0) = x;(x) and Hp the single-
particle free Hamiltonian with PBC]. These time evolved
wave functions can be calculated from Egs. (4) and (5)
obtaining

+o00
Oi(x )= 3, PP+ pLo) ©6)
p=—
where
(1- ia)t)/'/zg*i[thxz/z(]+w2t2)] N
OP(x, 1) = e .
J (1 +iwnUth/2 o

(7)

is the time evolved eigenfunction in infinite space which
agrees with the result in [36]. The boson-fermion mapping
remains valid for the time-dependent problem [45].

Time evolution of the density profile—We start the
analysis of the many body problem from the density profile
n(x, 1) = 3 ;|P;(x, 1)|?> which shows clearly how a nonzero
stationary value can be achieved in a trap release experi-
ment. From Eq. (7) we have for arbitrary time, N, L, w,

1 i
VI+ 0’ =
+ pL + gL
TG ®

V1 + 0?2 V1 + 0?2

n(x, [) — ei[wzl/Z(l+m2t2)][(x+pL)2f(x+qL)z]

which, in the TD limit, because of the strongly oscillating
phase factor, reduces to the diagonal part p = ¢,

P>

l+wt2 -

2

n(x, 1) = 9)

( x+ pL )
X. S ——
! V1 + w?f?
and can be rewritten in terms of the TD limit of the particle
density at initial time ny(x) = (V2Nw — 0?x?)/m as

1 x+ pL
nx, t) = —= ( ) (10)
1+ 0?72 p_z_oo 1+ 0?12
In Figs. 1 and 2 we show the numerically calculated time-

dependent density for finite but large N which perfectly
agrees with the above TD prediction for any time.
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FIG. 2 (color online). (a)-(c) Time evolution of the density
n(x, t) for different x/L and sizes. Dashed red lines indicate the
equilibration value N/L at infinite time. (d) Density profile for
L = 1600 at different rescaled times ¢/L. Symbols are the exact
dynamics for finite N, while full black lines are the TD limit.

The two-point fermionic correlator C(x, y;t) =
(Wt (x, NW(y, 1)) is given by
N-I

Clx, y;1) = Y @i(x, )D(y, 1). (11)

j=0

The numerical determination of this correlation function
for finite NV is reported in Fig. 3, showing the approach to
the infinite time limit [46]

Jl[\/Za)N(x - y)]
V2oNx —y)

C(x, y;t — 00) = 2n

(12)

with J,(z) the Bessel function.

Reduced density matrix and the GGE.—For a closed
system evolving under Hamiltonian dynamics, the exis-
tence of a stationary state may seem paradoxical because
the whole system is always in a pure state and cannot be
described by a mixed state at infinite time. This “paradox”
is solved in the reduced density matrix formalism: given a
space interval A, the reduced density matrix is p,(¢) =
Trgp(f), where B is the complement of A and p(f) =
|W(1)}W(r)| is the density matrix of the whole system.
With some abuse of language, we say that a system
becomes stationary if, after the TD limit is taken for the
whole system, the limit p4 o = lim,_,,p4(?) exists for any
finite A [17]. Furthermore, we say that a system is
described by a statistical ensemble with density matrix
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FIG. 3 (color online). (a)—(d) Snapshots of the correlation
Re[C(x, 0;1)] at different rescaled times t/L and sizes. For
t/L = 0 the full line is the initial correlation in the TD limit,
ie., C(x,0) = sin[v/2wNx]/m7x valid for x < L. The full line
for t/L =2, 4 is the stationary value in Eq. (12). As time
increases, two symmetric peaks are expelled from the central
region. The inset in (d) shows the evolution for fixed x = 5 and
L = 1600: after the moving peak has been expelled, the corre-
lation is damped in time and converges to the GGE.

pg if the reduced density matrix p,p = Trgpp equals
PA,co-

For a gas of free fermions, by means of the Wick
theorem, any observable can be obtained from the two-
point correlator. The construction of p4 in terms of C(x, y)
in continuous space has been detailed in [47] (generalizing
the lattice approach [48]). As a crucial point, the nonlocal
transformation mapping the Tonks-Girardeau gas to free
fermions is local within any given compact subspace; i.e.,
the bosonic degrees of freedom within A can be written
only in terms of fermions in A. This is analogous to lattice
models such as the Ising chain [16—18]. Thus, if for finite
x, y, C(x, y; t — o0) is described by a statistical ensemble,
also p, will be and consequently the expectation value of
any observable local within A.

Because of integrability, it is natural to expect that
Eq. (12) should be described by a GGE:

poge = Z le” XA, (13)

with {I;} a complete set of local integrals of motion and A;
Lagrange multipliers fixed by the conditions (¥, |I;| V) =
T pggel;], with |¥,) the many body initial state.
However, for free fermions, one can work with the mo-
mentum occupation modes 7, = chk which are nonlocal
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FIG. 4 (color online). The GGE structure factor S(k) as a
function of k/2kp (kp = 7rn) for different initial trap potentials
N compared with the ground-state one (dashed line).

integrals of motion, but can be written as linear combina-
tions of local integrals of motion [28]. In the TD limit, the
initial values of 7, are

Nt 2 2Nf k?
Wl V) = A i|P== 1 - : 14
( Olnkl o> Z(_)l k,,| "\ 2wN (14)

and zero if the argument of the square root is negative. In
the GGE we have Tt[ pggeiix] = (e* + 1)7!, and equating
the two, the A, are derived. It is now straightforward to
show that C(x, y) in the GGE equals the infinite time limit
of trap release in Eq. (12) [46]. This shows that all sta-
tionary quantities of the released gas are described by a
GGE. Furthermore, in Ref. [19] it has been shown that all
nonequal time stationary properties are always determined
by the same ensemble describing the static quantities, and
S0, even in our case, they are encoded solely in the GGE.

Structure factor in the GGE.—The structure factor S(k)
is the Fourier transform of the density-density correlation
(A(x, )A(0, 1)). In any ensemble which is diagonal in the
Fourier modes, in the TD limit the structure factor can be
written in terms of occupation modes n; as

e _ L [dq _ 42n k
L= 50 " m/wa ( 2wN)’ (1>

N | 27 ta"=a

where the right-hand side is obtained using the GGE n;
given in Eq. (14). Here f(x) =[(4 + x?)E(1 — 4/x*) —
8K(1 — 4/x*)]|x|/6 if |x] <2 and zero otherwise, where
E(z) and K(z) are standard elliptic functions and f(0) =
4/3. S(k) turns out to be an even function of k and mono-
tonic for k > 0. The plot of S(k) for different initial trap-
ping potentials is reported in Fig. 4. S(k) resembles the
one found numerically in [41] for the Lieb-Liniger gas.
Because of the trap release constraint JVNw > 2\/§n, we
have S(k) > S(0)=1—8/37 = 0.151174.... This cal-
culation shows how easy it is to obtain GGE predictions
without solving the full nonequilibrium dynamics.

The bosonic two-point function or one-body density
matrix Cp(x, y; 1) = (& (x, ) D(y, 1)) [with CiD(y, t) bosonic
annihilation operator] is a nontrivial quantity whose

calculation presents difficulties also in thermal equilibrium
[49]. However, using the approach in [50], the computation
is easy for large time and in the TD limit obtaining [46]

Cplx, y;t— ) = C(x, y; t — o)e 2k (16)

with C(x, y; t — o0) the fermion correlator in Eq. (12). For
small distances, Cy(x, y; t — o0) shows a singular behavior
of the form |x — y|, which is different from its thermal
counterpart |x — y|* [49]. This behavior is strictly valid
only in the TD limit because, for any finite N, at very small
distances Cp(x, y;t — o0) crosses over to |x —y|* as
expected from general arguments [49]. This finite N cross-
over is numerically demonstrated in [46]. Consequently,
the momentum distribution function has a large momen-
tum tail of the form k~2 which crosses over to the standard
k™* for even larger k. This large-momentum crossover
should be a measurable signature of the GGE.

Trap to trap release.—The case of a Tonks-Girardeau
gas released not in a periodic system but in a larger
harmonic trap has been solved by Minguzzi and
Gangardt [36] who showed that the system oscillates for-
ever without relaxation. However, even in this case, it is
simple to see that the time-averaged two-point correlations
(and hence by Wick theorem any observable) are still
described by a GGE.

Conclusions.—In this Letter we solved analytically the
nonequilibrium dynamics of a Tonks-Girardeau gas fol-
lowing a trap release to a periodic geometry as in Fig. 1.
We prove that for long time and in the TD limit, any finite
subsystem becomes stationary and its behavior is described
by a GGE. This provides the first analytic proof of a GGE
for an inhomogeneous initial state. We stress that the
mechanism responsible for the equilibration is very differ-
ent from the one in a global quantum quench since in the
trap release it is due to the interference of the particles
going around the circle many times. This equilibration
mechanism is expected to be the same for any one-
dimensional gas released into a circle.

Apart from the per se experimental interest [7,8], these
results represent a first step towards a complete analytical
understanding of the famous quantum Newton cradle [2] at
least in the Tonks-Girardeau limit.
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