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Chimera states occur spontaneously in populations of coupled photosensitive chemical oscillators.
Experiments and simulations are carried out on nonlocally coupled oscillators, with the coupling strength
decreasing exponentially with distance. Chimera states with synchronized oscillators, phase waves, and

phase clusters coexisting with unsynchronized oscillators are analyzed. Irregular motion of the cores of
asynchronous oscillators is found in spiral-wave chimeras.
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Common coupling schemes for describing interacting
oscillators include global coupling, where each oscillator is
coupled equally to all other oscillators, and local coupling,
where each oscillator is coupled only to its nearest neigh-
bors [1]. Nonlocal coupling schemes, where each oscillator
is coupled to a range of nearby oscillators, lie between the
extremes of global and local coupling [2-9]. The coupling
strength in nonlocal coupling typically attenuates with
decreasing oscillator proximity, although it can take on a
variety of forms. Nonlocal coupling is found in natural and
synthetic systems, for example, neuronal networks and
arrays of Josephson junctions [4,10,11].

In early studies of nonlocal coupling, Kuramoto and
co-workers [2,3] found highly unusual synchronization dy-
namics, later called the chimera state [4], which consisted of
coexisting subpopulations of synchronized and unsynchron-
ized oscillators, even though the oscillators were identical
and were coupled to each other in an identical manner.
They studied 1D and 2D systems of oscillators in ring [2]
and planar [3] configurations, with the coupling strength
decreasing exponentially with distance. In the 2D case, the
partitioning of synchronized and unsynchronized oscillators
takes the form of a spiral wave rotating around a region of
unsynchronized oscillators.

Chimera states have recently been studied experimen-
tally by Hagerstrom et al. [12] in coupled-map lattices
and by Tinsley et al. [13] in populations of chemical
oscillators. The coupled-map lattice experiments [12]
were based on a camera-spatial light modulator (SLM)
system, with each oscillator coupled to a range of neigh-
boring oscillators [9]. The chemical oscillator experiments
[13] were based on coupling photosensitive oscillators with
a camera-SLM system and utilized two coupling strengths,
following the scheme of Abrams et al. [7].

In this Letter, we report on experimental and computa-
tional studies of coupled photosensitive chemical oscilla-
tors. We follow a Kuramoto-like nonlocal coupling scheme
[2,3], with the nearest neighbors having the strongest
coupling and the coupling strength for each successive
neighbor falling off exponentially. We report new aspects
of chimera behavior, including groups of unsynchronized
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oscillators serving as the source of synchronized 1D phase
waves. Meandering synchronized groups of oscillators in
1D experiments and simulations provide insights into
the meandering asynchronous spiral cores found in 2D
simulations with a realistic model of the coupled chemical
oscillators.

Experiments are carried out with the Belousov-
Zhabotinky (BZ) reaction [14], where catalyst particles
in catalyst-free reaction mixtures form populations of
discrete chemical oscillators [13,15]. The BZ reaction is
photosensitive with the Ru(bipy)3* catalyst [16], which,
when loaded onto cation-exchange particles, allows ma-
nipulation of the phase of each oscillator with light from
an SLM. The gray level I; of each oscillator is monitored
with a CCD camera, which is then used to calculate the
appropriate light perturbation ¢ ; from the SLM according
to the coupling relation

jtn

b;=cdo+ > KU,(1—7) =), (1)

p=j—n

where ¢ is the background light intensity [17], 7 is a time
delay [6] in the feedback from neighboring oscillator p to
oscillator j, and j = 1,2,..., N. The coupling radius is n
(number of coupled neighbors on each side of oscillator j),
and the coupling function is given by K=K'exp(—«|p —j|),
where K’ and « are constants that govern the effective
coupling strength and range of each oscillator.

The experiments are carried out with 40 oscillators in a
ring configuration, coupled according to Eq. (1). Figure 1
shows an example of typical experimental behavior, where
a snapshot of the phase of each oscillator at = 1220 s is
shown in Fig. 1(a). We see a group of synchronized oscil-
lators with oscillator index j = 9-17 and unsynchronized
oscillators with j = 1-8 and j = 30-40. Oscillators with
Jj = 18-29 form a diagonal feature, which represents a
splay-like state [18].

Figure 1(b) shows the phase calculated from the
measured gray level as a function of time for each of
the oscillators. The spontaneous appearance of the group
of synchronized oscillators can be seen at ¢ = 300 s.
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FIG. 1 (color online). Experimental behavior of 40 oscillators
coupled according to Eq. (1) in a ring configuration, with
n=10, k = 0.5, K’ =1, and 7 =30 s. The experiment was
started with a quasirandom initial phase distribution of the
oscillators. (a) Snapshot showing the phase of each oscillator at
t = 1220 s. (b) Phase of each oscillator as a function of time.
(c) Period of each oscillator at + = 900 s (blue +) and 1500 s
(red bullet). (d) Local order parameter R according to Eq. (2) as a
function of time, with m = 3. See the Supplemental Material
[25] for a video of the phase of each oscillator in (a) as a function
of time.

The diagonal wave feature occurs at ¢ = 600-1200 s, and,
at t = 1200-1400 s, it transforms into a group of synchro-
nized oscillators that are out of phase with the original
synchronized group. Figure 1(c) shows the period of each
oscillator for two different times, demonstrating that
the simultaneous firing of the synchronized oscillators
gives rise to a shorter oscillatory period than that of the
unsynchronized oscillators.

The evolution of the chimera state in terms of the local
order parameter R [9], defined by

1 jtm
R, =5 | X explif(p,1)] | )
p=j—m

is shown in Fig. 1(d), where j=1,2,...,N, and m
is the sampling radius. The high order of the original
group of synchronized oscillators can be seen as well as
the region of synchronization appearing at t = 1400 s.
The remaining unsynchronized oscillators make up the
surrounding regions of low order. Size oscillations of the
synchronized group occur as the higher-frequency oscilla-
tors “lap” the unsynchronized oscillators, and neighboring
oscillators transiently join the synchronized group when
their phases align.

Many nonlocal coupling experiments were carried out,
some with quasirandom distributions of the initial phases
and others with special initial conditions. In the first case,
a group of synchronized oscillators typically appeared
spontaneously, with different realizations usually giving

rise to different regions of synchronized and unsynchron-
ized oscillators. In experiments with special initial condi-
tions, a group of synchronized oscillators approximately
the size of a spontaneously formed group was produced
by using perturbations in illumination intensity, while the
remaining oscillators had a quasirandom distribution of
phases. In these experiments, the region of synchronization
typically evolved in time, either disappearing with another
synchronized region appearing or shifting to another
region among the unsynchronized oscillators. The photo-
sensitive chemical oscillators have an inherent distribution
in the oscillatory period (60.0 £ 4.0 s) that arises from the
size distribution of the catalytic particles. The oscillator
populations with this distribution allowed full synchroni-
zation of the oscillators in addition to the chimera state
for the same conditions, ensuring that a partially entrained
state with synchronized and unsynchronized oscillators
arising from an overly broad frequency distribution did
not occur [7,19].

Simulations of the nonlocally coupled chemical oscilla-
tors were carried out using the two-variable Zhabotinsky-
Buchholtz-Kiyatkin-Epstein (ZBKE) model for the BZ
reaction [20], modified to describe the photosensitivity of
the Ru(bpy)>* catalyzed discrete oscillator system [21]:
dX;/dt= f(X;,Z;, q;) + ¢;/ €, dZ;/dt=g(X;,Z; q;)+
2¢;, where f and g represent the nonphotochemical com-
ponents of the BZ reaction, and X, Z;, and ¢; are [HBrO,],
[Ru(bpy)>*], and the stoichiometric factor associated with
the jth oscillator. A Gaussian distribution in oscillatory
period, reflecting the experimental period distribution, was
realized by using a Gaussian distribution in the value of g;.
The photoexcitatory feedback on oscillator j is ¢, calcu-
lated according to Eq. (1), where the gray levels I,, and /;
are replaced by the catalyst concentrations Z, and Z;.

Figure 2 shows behavior from a simulation of the non-
locally coupled BZ oscillator system, where a group of
oscillators spontaneously synchronized at t = 2.0 X 103 to
form a chimera state of synchronized and unsynchronized
oscillators. Figure 2(a) shows a snapshot of the phase
of each oscillator at # = 1.90 X 10*. The phase of each
oscillator as a function of time in Fig. 2(b) illustrates the
stability of the synchronized group but also illustrates
the complex behavior of the unsynchronized oscillators,
which tend to form transient diagonal wave features as
well as transient in-phase or out-of-phase synchronization
of a few oscillators. Figure 2(c) shows that the period of
the synchronized oscillators is significantly shorter than
that of the unsynchronized oscillators, much like the
experimental system shown in Fig. 1(c). Figure 2(d) illus-
trates the evolution of the chimera state according to the
local order parameter R in Eq. (2). We again see features
that correspond to size variations of the synchronized
group, although in this example the changes are irregular.

Several different types of chimera behavior were found
in our experiments and simulations, for example, the
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FIG. 2 (color online). Model simulations of 40 coupled
BZ oscillators in a ring configuration, with n = 10, k = 0.4,
K' =63 X107, 7 = 35.0, and ¢py=1.6X10"*. The simulation
was started with a random initial phase distribution. (a) Snapshot
showing the phase of each oscillator at # = 1.90 X 10*. (b) Phase
of each oscillator as a function of time. (c) Period of each
oscillator at r = 1.85 X 10* (blue +), 1.90 X 10* (red bullet).
(d) Local order parameter R as a function of time, with m = 3.
See the Supplemental Material [25] for a video of the phase of
each oscillator in (a) as a function of time.

coexistence of unsynchronized oscillators with synchro-
nized phase waves, as shown in Fig. 3(a). Video images
show that the waves are initiated from a small region
of unsynchronized oscillators, with oscillator index
J = 30-34. On the right-hand side, the wave travels along
the diagonal j = 35-40, where it continues through the
periodic boundary to j = 1-9. The wave on the left-hand
side j = 24-29 travels to a group of unsynchronized oscil-
lators j = 10-23 corresponding to the collision region of
the two waves. The phase of each oscillator as a function
of time shows the persistence of the wave features; see
Fig. 3(b). This phase-wave behavior is likely related to
g-twisted states described in theoretical studies [18].
Complex behavior is again seen in the unsynchronized
oscillators, with small groups becoming transiently syn-
chronized in wavelike structures.

In addition to chimera states with synchronized wave
behavior, we also find phase-cluster chimera states [6],
where two or more out-of-phase groups of synchronized
oscillators coexist with unsynchronized oscillators.
Figure 3(c) shows a snapshot of the phase of each oscillator
in an experimental phase-cluster chimera at t = 1206 s.
We see two clusters of synchronized oscillators having
the same phase with j = 5-10 and j = 22-29 and a third
out-of-phase cluster with j = 33-37. The local order
parameter R as a function of time in Fig. 3(d) shows that
these clusters persist and, interestingly, that the first cluster
displays prominent antiphase size oscillations.

Simulations based on the photosensitive BZ oscillator
model have also been carried out in a planar two-dimensional
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FIG. 3 (color online). Simulations of phase-wave chimera
states (top) and experimental measurements of phase-cluster
chimera states (bottom). (a) Model simulations of 40 coupled
BZ oscillators, with n=10, «=04, K =63X107,
7=135.0, and ¢, = 1.6 X 10™*. The snapshot shows the phase
of each oscillator at t = 1.93 X 10*, where the red lines have
been added to guide the eye. The simulation was started with a
random initial phase distribution. (b) Phase of each oscillator in
(a) as a function of time. (c) Measurements showing experimen-
tal phase-cluster chimera in 40 coupled BZ oscillators, with
n=10, k=0.8, K’ = 1.0, and 7 = 30.0 s. The experiment
was started with a quasirandom initial phase distribution; the
snapshot shows the phase of each oscillator at t = 1206 s.
(d) Local order parameter R of oscillators in (c) as a function
of time, with m = 3. See the Supplemental Material [25] for
videos of the phase of each oscillator in (a) and (c) as a function
of time.

configuration. We use the same nonlocal coupling, with the
separation of the oscillators determined by the Pythagorean
distance according to the oscillator indices in the square
lattice, which is typically made up of 50 X 50 oscillators
[22]. The spiral cores of asynchronous oscillators meander
in an irregular manner, with the form of the meandering
sensitive to the value of the delay 7. Figures 4(a) and 4(b)
show snapshots of pairs of initially symmetrical counter-
rotating spirals at # = 3500 for two slightly different values
of 7. A 2D local order parameter can be calculated through
generalization of Eq. (2), and the value of R at each point
in Figs. 4(a) and 4(b) is shown in Figs. 4(c) and 4(d). The
meander of the asynchronous core is tracked by following
the minimum in R, and Fig. 4(c) illustrates the case in
which the asynchronous cores undergo approximately
random-walk behavior. We have observed cases in which
the mean-squared displacement is linear with time,
although we also find deviations from this behavior.
Figure 4(d) shows larger irregular motions of the cores of
asynchronous oscillators. The irregular motion in both
cases is similar to that of reaction-diffusion spiral cores
in the presence of spatiotemporal noise imposed on the
medium excitability [23].
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FIG. 4 (color online). Simulations of spiral chimera states
in populations of BZ oscillators. The system is composed of
50 X 50 oscillators in a square-lattice configuration, with a
coupling radius of n = 4 and fixed boundary conditions. The
top images show the phase of each oscillator in the lattice at
t = 3500 for values of delay 7= 4.0 (a) and 3.4 (b). Each
simulation is initiated with a pair of symmetric counterrotating
spirals, with 7 = (. The delay is switched on at t = 500, and the
simulation is continued to ¢ = 3500. (c), (d) Shown is the local
order parameter R at ¢+ = 3500. The dark blue line shows the
trajectory of the minimum in R between t = 700 and 3500.
Parameters: k = 0.3, K’ = 1.4 X 1073, and ¢, = 1.1 X 107*.
See the Supplemental Material [25] for videos of the evolution
of each spiral pair in (a), (b) and the spiral-core trajectory as a
function of time in (c), (d).

The irregular meandering behavior arises from the
interaction of the core of asynchronous oscillators
with the spiral-wave tip. As the tip rotates, it experiences
different asynchronous oscillators, which, depending on
the oscillator phase, cause the tip to grow or contract.
The interaction may occur with more than the outer
“boundary” of asynchronous oscillators when transient
phase alignment occurs with the interior oscillators, lead-
ing to larger fluctuations of the spiral tip. Changes in the
spiral tip also lead to distortions of the shape of the core
of asynchronous oscillators. Similar complex motion of
spiral centers has been reported in two-dimensional sys-
tems of coupled phase-shifted oscillators, with the rigid
rotating solution typically becoming unstable with increas-
ing phase shift [24].

Our experiments and modeling studies of chimera
behavior in 1D ring configurations provide insights into
spiral chimera behavior in 2D. In both the 1D phase-wave
chimera [Fig. 3(a)] and the 2D spiral-wave chimera
(Fig. 4), the waves originate from a group of unsynchron-
ized oscillators. The 1D out-of-phase wave initiation
shown in Fig. 3(a) is suggestive of a 1D spiral wave and

is related to g-twisted states [18]. The size variations
of the groups of synchronized oscillators seen in 1D
[Figs. 1(d), 2(d), and 3(d)] are related to the meandering
behavior of the spiral core of asynchronous oscillators in 2D.

This material is based on work supported by the
National Science Foundation (Grant No. CHE-1212558).

Note added in proof.—A new experimental example of
chimera states has been studied in mechanical oscillator
networks [26].
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