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We present a general protocol for stabilizer operator measurements in a system of N superconducting

qubits. Using the dispersive coupling between the qubits and the field of a resonator as well as single qubit

rotations, we show how to encode the parity of an arbitrary subset of M � N qubits, onto two

quasiorthogonal coherent states of the resonator. Together with a fast cavity readout, this enables the

efficient measurement of arbitrary stabilizer operators without locality constraints.
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Several milestones on the road to quantum computing
with superconducting circuits have recently been reached,
such as the experimental violation of Bell’s inequality [1]
and the demonstration of rudimentary quantum error cor-
rection (QEC) [2]. As the resources required for more
complete QEC protocols come within experimental reach,
it is desirable to develop a toolbox sufficiently versatile to
allow the implementation of a wide class of codes. Most
QEC codes can be described concisely in the stabilizer
formalism of Gottesman [3]. In this framework a QEC
code is defined by the subspace spanned by the eigenstates
with eigenvalueþ1 of a set of commuting multiqubit Pauli
operators called stabilizer operators. Error detection is
achieved by measuring the stabilizer operators of the
code, the syndrome of an error being a sign flip of a subset
of these operators. Correction in turn, can be performed
when the syndrome contains enough information to
identify the location and type of the error. The ability to
measure arbitrary multiqubit Pauli operators would thus
allow a direct realization of stabilizer QEC codes, includ-
ing nonlocal quantum low density parity check codes [4].

Toric and surface codes [5,6] defined on two-
dimensional qubit lattices are promising stabilizer codes
with high thresholds for fault tolerance [7]. However,
because the elementary (anyonic) excitations of these
systems can diffuse at no energy cost, quantum memories
built from these codes are thermally unstable [8,9].
Thermal stability can be obtained by engineering effective
interactions between the anyons [10,11] or by going to
four dimensions, where deconfinement of anyons is ener-
getically suppressed [12]. To be physically realizable,
however, the latter needs to be mapped back onto a lattice
of qubits with dimension D � 3. This mapping inevitably
leads to nonlocal stabilizer operators, which one must be
able to measure. In this work we take a first step in this
direction and propose a scheme to measure arbitrary
stabilizer operators in a system of superconducting qubits
off-resonantly coupled to a common mode of a microwave
resonator.

Several schemes for parity measurements of super-
conducting qubits have recently been proposed [13–15].

The main advantage of our approach is the ability to
selectively address an arbitrary subset of qubits, without
the need for tunable couplings, in contrast to earlier work
[16,17], and without restrictions on the number of and
distance between physical qubits defining a given stabilizer
operator. We thus extend the superconducting qubit tool-
box with functionality similar to that recently demon-
strated for trapped ions [18].
Central to our proposal is the off-resonant coupling

between a superconducting qubit and a single mode of a
microwave resonator [19] described by the dispersive
Hamiltonian Hdisp ¼ ��zaya, where �z¼jeihej�jgihgj
is the Pauli matrix in the computational basis fjgi; jeig of
the qubit and a (ay) denotes the photon annihilation (cre-
ation) operator of the cavity mode. This coupling describes
a qubit-state-dependent frequency shift �� of the cavity,
or, equivalently, a photon-number-dependent frequency
shift 2n� of the qubit. In the weakly dispersive regime
2�� 1=T2, �, where � is the bare cavity linewidth and
T�1
2 ¼ ð2T1Þ�1 þ �� is the qubit coherence time com-

posed of relaxation 1=T1 and pure dephasing ��, this

interaction enables a qubit readout by measuring the phase
shift of transmitted or reflected microwaves [19]. In this
work, we are interested in the ultrastrong dispersive regime
of well-resolved resonances [20], where �, T�1

2 � �. In
this regime, we show how to encode the two eigenvalues of
an arbitrary multiqubit Pauli operator onto quasiclassical
oscillations of light that differ in phase by �.
Although our scheme is applicable to other types of

superconducting qubits, for clarity we will frame our
discussion around the specific case of transmon qubits.
A transmon qubit [21,22] is formed by a superconduct-
ing dipole-antenna with a Josephson junction at its cen-
ter with Josephson energy EJ � EC � e2=ð2C�Þ, where
C� represents the total capacitance between the antenna
pads. Neglecting charge-dispersion effects, which are
suppressed exponentially in EJ=EC [21], the low-energy
spectrum of an isolated transmon is well approximated
by that of an anharmonic oscillator with frequency
!01 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p � EC and weak anharmonicity !01 �
!12 � EC � !01. In state-of-the-art realizations, the
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qubit linewidth 1=T2 is close to being limited by relax-
ation [22–25]. In this work we are interested in a
setup such as depicted in Fig. 1(a), where N transmons
are coupled dispersively with strength � to a micro-
wave field inside a 3D cavity. For simplicity, we here
discuss the case of equal dispersive couplings. In the
Supplemental Material [26] we show how to cope with
the more realistic case of unequal dispersive shifts.
For control and readout purposes an ancilla qubit is
further dispersively coupled to both the high-Q cavity
containing the N qubits with �A � N� and to a low-Q
(readout) cavity, similar to the setup used in [27]. We
assume that both the ancilla qubit and the readout cavity
remain in the ground state, except during readout and
manipulation. Thus omitting, for now, the corresponding
degrees of freedom, we model this system in an appro-
priately rotating frame (see Supplemental Material [26]
for details), by the effective Hamiltonian

H0 ¼ �
XN
i¼1

�z
ia

ya� Kayayaa: (1)

The transmons are treated here as two-level systems
assuming their anharmonicity is larger than their line-
width (i.e., EC > 1=T2). Furthermore, assuming the
qubits to be sufficiently detuned from each other, we
neglect the cavity-mediated qubit-qubit interaction. The
latter leads to frequency shifts of the order of �2=�,
where � is the detuning between the two qubits. For the
parameters used below (� ¼ 5 MHz and � 	 2 GHz),
these shifts are smaller than about 10 kHz. The second
term on the right-hand side of Eq. (1) accounts for the
(negative) qubit-induced anharmonicity of the cavity
[28,29]. In the weak dispersive regime, this term can
usually be neglected as K � �. We find that in the
ultrastrong dispersive regime it is necessary to account
for its leading order effect. We next show how to encode

the parity ZSN ¼ N
N
i¼1 �

z
i of an N-qubit state jc iN onto

two quasi-orthogonal coherent states of the cavity differ-
ing in phase by �.
Parity encoding.— Suppose the system is initially

prepared in the product state j�it¼0 ¼ j�ijc iN , where
j�i is a coherent state of the cavity with amplitude �.
Making use of the identity exp½�ið�=2ÞPN

i¼1 �
z
i 
 ¼

ð�iÞNZSN , one can show that under the action of (1), at

time T ¼ �=ð2�Þ, the state becomes

j�iT ¼ UKðj�NiPþ
SN

þ j� �NiP�
SN
Þjc iN; (2)

where P�
SN

¼ ð1� ZSN Þ=2 are the projectors onto the even
(þ ) and odd (� ) qubit parity subspaces as measured by
the �1 eigenvalues of the multiqubit Pauli operator ZSN

and �N ¼ ð�iÞN�. Note that the self-Kerr term is qubit
independent [30] and conserves the photon number aya.
Because it commutes with the dispersive term, its effect
factors out and is captured in (2) by the unitary operator
UK ¼ exp½i�K=ð2�Þayayaa
. For weak nonlinearity
such that �K � �, the leading order effect of UK acting
on the coherent states j� �Ni is a rotation of the mean
amplitude by an angle ��nl ¼ � �nK=� with the mean
photon number �n ¼ j�j2. To leading order in K=�, the
state (2) is thus well approximated by

j�iT ¼ j~�NiPþ
SN
jc iN þ j� ~�NiP�

SN
jc iN; (3)

with ~�N ¼ �Ne
�i��nl . The subleading order effect is a

damping of the mean amplitude by a factor
expð���2

nl=ð2 �nÞÞ [31]. We emphasize that in the

ultrastrong dispersive regime �=� � 1 considered here,
photon decay only weakly damps the amplitude of the
coherent states in (3) by a factor expð��T=2Þ �
1� ð�=4Þð�=�Þ. Ignoring these small effects, we thus
see that the dispersive interaction can be used to encode
the parity of the multiqubit state onto two coherent states of
the cavity differing in phase by �.
Subset selectivity.—Typically stabilizer operators are

defined on subsets of qubits. Selectivity to M � N qubits,
labeled by the set SM � SN ¼ f1; . . . ; Ng, can be achieved
as follows. Consider the identity

USM ðtÞ ¼
0
@O

i�SM

�x
i

1
AUSN

�
t

2

�0@O
i�SM

�x
i

1
AUSN

�
t

2

�
; (4)

where USðtÞ ¼ expð�it�aya
P

i2S�
z
i Þ. Equation (4) can

be easily shown using �x�z�x ¼ ��z. Thus, by splitting
the dispersive evolution of all N qubits into two equal
halves and interspersing them with bit-flip operations on
the qubits not in SM, we can effectively echo away the
contribution of the latter to the total ‘‘magnetization’’ and
implement the dispersive evolution USM ðtÞ of the qubits in
SM alone. Acting on an initial state of the form j�ijc iN,
USM ðT ¼ �=ð2�ÞÞ then encodes the subset parity ZSM ¼N

i2SM
�z

i onto the state of the cavity as explained above.

FIG. 1 (color online). (a) 2D array of N transmon qubits in a
3D cavity. The ancilla qubit and the upper cavity are used for
readout or reset and manipulation purposes. Cavity (b) and qubit
(c) spectra in the ultrastrong dispersive regime.
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The case of unequal dispersive shifts is treated in the
Supplemental Material [26].

Physically, the initial unconditional cavity displacement
and bit flips can be implemented via fast microwave pulses
(see Supplemental Material [26]). Because of the disper-
sive interaction, the qubit transition frequency of the ith
qubit splits into a ladder of frequencies !n

qi ¼ !0
qi þ 2n�,

corresponding to different photon numbers in the cavity
[Fig. 1(c)]. The latter are Poisson distributed and peaked
around �n. Hence, to best approximate an unconditional
rotation of the ith qubit, the pulse must be centered at the
frequency !0

qi þ 2 �n� and have a frequency width large

compared with 2
ffiffiffi
�n

p
�. For j�j 	 1=� the duration of such

a � pulse is thus T� � 1=ð2 ffiffiffi
�n

p
�Þ � T. Similarly, the

initial coherent state of the cavity j�i can be prepared
from the vacuum by driving the cavity at the frequency
!c � �A with a pulse of area � and a frequency width
large compared with 2N�, the maximal frequency spread
of a cavity dispersively coupled with strength � toN qubits
[Fig. 1(b)]. Again the duration Td of this pulse is short
since Td � 1=ð2N�Þ< T. The total duration of the encod-
ing is thus dominated by the dispersive evolution time
T ¼ �=ð2�Þ, which is independent of N and M.

As an example, Fig. 2 shows the results of a numerical
simulation encoding the parity of M ¼ 2 out of N ¼ 4
qubits, which accounts for finite (square) pulse duration,
decoherence and qubit-induced cavity nonlinearity. For the
parameter values given in the caption, we find a fidelity

(overlap with the ideal target state) of 98%. By applying
single-qubit rotations to individual qubits before and after
the encoding one may similarly encode the parity of an
arbitrary weight M Pauli operator QSM ¼ N

i2SM
�i, with

�i 2 f�x
i ;�

y
i ;�

z
i g.

Parity readout.—The encoded state is of the
form j�iT ¼ j~�MiPþ

SM
jc iN þ j � ~�MiP�

SM
jc iN , where

P�
SM

¼ ð1 � QSM Þ=2 and ~�M ¼ ð�iÞMe�i��nl�. The

overlap between the two cavity states, h~�Mj � ~�Mi ¼
expð�2j�j2Þ, is independent of K and M. For large j�j,
these two states are distinguishable in principle and a
measurement of the cavity state is equivalent to a multi-
qubit parity measurement. A fast readout of the cavity state
with Tmeas � 1=�, may be achieved by lowering the Q
factor of the cavity containing the qubits (� ! �0 � �),
as recently demonstrated [32]. This Q switching adversely
affects the lifetime of the qubits via the Purcell effect.
However, the latter is expected to be weak as long as
�0 � �. Alternatively, the cavity state can be mapped
onto the ancilla qubit, which can subsequently be measured
through standard homodyne measurement of the low-Q
readout cavity. The mapping is achieved physically in three
steps. First, the high-Q cavity field is displaced uncondi-
tionally by ~�M. To a good approximation, this maps the
encoded state onto

D~�M
j�iT ¼ j2~�MiPþ

SM
jc iN þ j0iP�

SM
jc iN: (5)

The second step consists in performing a � pulse on the
ancilla qubit, which so far was in its ground state, condi-
tioned on the cavity being in the vacuum state. As first
proposed in [33] and demonstrated in [27], this can be
achieved by applying a pulse centered on the bare ancilla
qubit transition frequency, which is narrow in frequency
compared with 8 �n�A [the additional factor of 4 is due to
the twice as large amplitude of the cavity state in the first
term on the right-hand side of Eq. (5)]. Because �A � N�,
a pulse duration TA can be chosen such that 1=ð2�AÞ �
TA � 1=ð2N�Þ. For �n > 1=4 the first inequality guaran-
tees conditionality while the second one allows us to
neglect the dispersive evolution during this operation.
The state then becomes approximately

j2~�MiðPþ
SM
jc iNÞjgiA þ j0iðP�

SM
jc iNÞjeiA: (6)

In the third and final step, a displacement of �2~�M is
performed on the cavity conditioned on the ancilla qubit
being in the ground state. This is achieved with a pulse
centered at frequency !c � �A, with a frequency width
small compared with 2�A but large compared with 2N�.
Neglecting again the dispersive evolution during this step,
the state finally becomes

j0i½ðPþ
SM
jc iNÞjgiA þ ðP�

SM
jc iNÞjeiA
: (7)

Note that the state (7) is now stationary with respect to the
dispersive interaction, there being no photons in the cavity.

FIG. 2 (color online). (a) Quantum circuit diagram for encod-
ing the parity of qubits 2 and 4 [full (blue) lines]. D� represents
the displacement operation, �x a single-qubit � pulse and T1=2 a

free dispersive evolution of duration �=ð4�Þ. (b) Numerical
simulation of the evolution of the Q function of the cavity
[31], with an initial qubit state jc i4 ¼ ðjgggei þ jggegi þ
jeeegiÞ= ffiffiffi

3
p

. Dissipation from photon loss at a rate �=ð2�Þ ¼
10 kHz and qubit decoherence with T1 ¼ T2 ¼ 20 �s are in-
cluded as well as a finite displacement and �-pulse duration of
1 ns. Other parameters are � ¼ 2, �=ð2�Þ ¼ 5 MHz and
K=ð2�Þ ¼ 80 kHz. The self-Kerr term leads to an additional
phase rotation ��nl ¼ 2K �n�t, where �t ¼ 50:3 ns is the total
duration of the encoding. Taking this rotation into account, we
obtain a fidelity of F ¼ 98% to the ideal target state j�iideal ¼
j~�2iPþ

f2;4gjc i4 þ j � ~�2iP�
f2;4gjc i4.
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Reading out the state of the ancilla qubit amounts to
measuring QSM . After the measurement, the ancilla qubit

may be reset to the ground state efficiently via the readout
cavity [34].

Simulated time evolution.—The ancilla qubit can also be
used to simulate the ‘‘time evolution’’ exp½�i�QSM 
 under
the action of an arbitrary Pauli operatorQSM . This is useful,

e.g., for manipulating a logical qubit state encoded in a
stabilizer subspace in which case QSM is taken to be a

logical qubit Pauli operator. Starting from the state
Eq. (5), this is achieved by adiabatically driving the ancilla
around a closed loop on its Bloch sphere subtending a solid
angle 4�, conditioned on there being no photons in the
cavity. The component in Eq. (5) with zero photons then
acquires a phase of 2� (half the solid angle) and the state
becomes

j2~�MiPþ
SM
jc iN þ e2i�j0iP�

SM
jc iN: (8)

Note that �A � N� guarantees that the adiabatic condi-
tion with respect to �A can be satisfied while still remain-
ing fast with respect to the dispersive time scale 1=ðN�Þ.
In (8) we omitted the state of the ancilla qubit, since it
starts and ends in the ground state and thus factors out. The
cavity is disentangled from the state by applying the
encoding protocol with � replaced by �~�M. After uncon-
ditionally displacing the cavity back to the vacuum, taking
into account an additional nonlinear phase acquired during
the decoding, the N-qubit state finally becomes

Pþ
SM
jc iN þ e2i�P�

SM
jc iN ¼ ei�e�i�QSM jc iN; (9)

which up to an unimportant global phase factor, represents
the action of the desired unitary.

Application.—To test the feasibility of the above proto-
cols, we simulated the preparation of a logical qubit state
of the four-qubit erasure channel code [35]. The stabilizer
generators of this code are S ¼ fZ1Z2; Z3Z4; X1X2X3X4g,
where we have switched to the standard notation Xi and Zi

for the Pauli operators of qubit i. The code space is spanned
by the two þ1 eigenstates of the stabilizer operators:

j�i ¼ 1
2 ðjggi � jeeiÞðjggi � jeeiÞ: (10)

The logical qubit Pauli operators are �Z ¼ X1X2 ¼ X3X4

and �X ¼ Z1Z3 ¼ Z2Z4 ¼ Z1Z4 ¼ Z2Z3. Because of the
redundancy of the logical operators, this code protects a
logical qubit state �jþi þ 	j�i from the loss (i.e., arbi-
trary error) of a known qubit [35]. Here we prepare the
logical qubit state j �c i ¼ exp½�ið�=8Þ �X
jþi as follows.
(i) We start with the fully polarized four-qubit state jggggi,
which is already a þ1 eigenstate of the Z stabilizer opera-
tors. (ii) Using the encoding protocol, we measure the
logical �Z operator X1X2. If we obtain �1, we apply Z1.
(iii) We measure the operator X3X4. If we obtain �1
we apply Z3. (iv) We reset the cavity to the vacuum.
These four steps prepare the logical state jþi. We next

use the ancilla (with �A ¼ 10N�) to implement the rota-
tion as described above with QS4 ¼ �X and � ¼ �=8.

Figure 3 shows the obtained fidelity to the ideal target state
exp½�ið�=8Þ �X
jþi as a function of � and K in units of
�=ð2�Þ ¼ 10 kHz and for T1 ¼ T2 ¼ 20 �s. The total
duration T of the state preparation is shown on the upper
x axis in units of 1=�. Focusing on the line K ¼ 0, when �
is small T is large and dominated by the dispersive evolu-
tions and the fidelity is limited by a combination of qubit
decoherence, photon loss and faulty conditional ancilla
rotation. The fidelity then increases with increasing �,
which reduces the preparation time T and hence the effects
of decoherence and improves the fidelity of the conditional
ancilla rotation. It reaches a maximum in a regime where
both conditional and unconditional operations can be per-
formed with high fidelity. A further increase in � degrades
the unconditional cavity displacement and qubit rotations
(a 1 ns pulse corresponds to a width of�160 MHz) and the
fidelity drops. The cavity nonlinearity K and the dispersive
shift � are in fact not independent, but rather related via
the single-qubit anharmonicity �q, by the inequality K 	
�2=ð4�qÞ [28], which is shown as a dashed (red) curve in

Fig. 3 for �q=ð2�Þ ¼ 200 MHz.

In conclusion, we proposed a protocol to measure sta-
bilizer operators defined on an arbitrary subset of super-
conducting qubits in the ultrastrong dispersive regime of
cQED. Challenges for the future will be to extend the
present protocol to carry out multiple stabilizer measure-
ments in parallel and to make it scalable perhaps by using
multiple cavities as in [14] and an efficient encoding of
multiple bits of information onto the photonic Hilbert
space [33].
We thank L. Jiang, M. Mirrahimi, D. Poulin, M. Devoret,

and R. Schoelkopf for discussions. The simulations were

FIG. 3 (color online). Fidelity of the prepared state to
exp½�ið�=8Þ �X
jþi. The (red) dashed curve represents the
boundary of the inequality K 	 �2=ð4�qÞ which relates the

self-Kerr K with the dispersive shift � and the single-qubit
anharmonicity �q [28]. Here �q=ð2�Þ ¼ 200 MHz.
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coded in PYTHON using the QUTIP library [36]. This work
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No. DMR-1004406), and the ARO (Grant No. W911NF-
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