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We formulate the in-medium similarity renormalization group (IM-SRG) for open-shell nuclei using

a multireference formalism based on a generalized Wick theorem introduced in quantum chemistry.

The resulting multireference IM-SRG (MR-IM-SRG) is used to perform the first ab initio study of all even

oxygen isotopes with chiral nucleon-nucleon and three-nucleon interactions, from the proton to the

neutron drip lines. We obtain an excellent reproduction of experimental ground-state energies with

quantified uncertainties, which is validated by results from the importance-truncated no-core shell model

and the coupled cluster method. The agreement between conceptually different many-body approaches

and experiment highlights the predictive power of current chiral two- and three-nucleon interactions, and

establishes the MR-IM-SRG as a promising new tool for ab initio calculations of medium-mass nuclei far

from shell closures.
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Introduction.—Neutron-rich nuclei are the focus of the
experimental program of current and next-generation rare
isotope facilities. Emerging phenomena such as halos or
neutron skins make these nuclei ideal laboratories to study
nuclear interactions in delicately tuned scenarios, and
motivate the use of ab initio many-body calculations to
provide their description from first principles. Such calcu-
lations make it possible to confront modern nuclear
Hamiltonians from chiral effective field theory [1,2] with
a wealth of data beyond few-body systems.

For light nuclei, the ab initio no-core shell model
(NCSM) [3,4] provides the capabilities for studies of iso-
topic chains, but for medium-mass nuclei this approach is
not feasible because of its large computational effort.
Many-body techniques with more modest computational
scaling, such as the coupled cluster (CC) [5–7] or self-
consistent Green’s function methods [8,9], can be used to
probe nuclei in the vicinity of shell closures, but are not
applicable for open-shell nuclei far from shell closures.
For such nuclei, a self-consistent Gor’kov formalism was
developed recently [10,11], but this approach is currently
limited to second-order terms in the many-body perturba-
tion expansion.

In this Letter, we describe the extension of the in-medium
similarity renormalization group (IM-SRG) framework of
Refs. [12,13] to open-shell nuclei by means of a multirefer-
ence formulation. We use the resulting multireference IM-
SRG (MR-IM-SRG) and two other many-body approaches,
the importance-truncated no-core shell model (IT-NCSM)
and the CCmethod, to perform the first ab initio study of all
even oxygen isotopeswith chiral nucleon-nucleon (NN) and
three-nucleon (3N) Hamiltonians.

Formalism.—The main tools for the derivation of the
MR-IM-SRG are the generalized normal-ordering and

Wick theorem by Kutzelnigg and Mukherjee [14]. We
write a string of creation and annihilation operators in
tensorial form

A1...k
l...N � ay1 . . .a

y
k aN . . . al; (1)

and expand it in terms of components that are normal
ordered with respect to an arbitrary reference state j�i
[14–16]. We obtain

A1...k
l...N ¼ :A1...k

l...N:þ �1
l :A

23...k
mn...N:� �1

m:A
23...k
ln...N:þ � � �
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lmÞ:A3...k
n...N:þ � � � ; (2)

where ::: indicates normal ordering, and we have intro-

duced irreducible one- and two-body density matrices �ð1Þ

and �ð2Þ:

�1
2 � h�jA1

2j�i; �12
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34j�i � �1
2�
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2
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The particle rank of the irreducible density matrices is
evident from the single-particle indices. Generally, up to

n-body irreducible density matrices �ðnÞ appear in the
expansion of an n-body operator, which are defined recur-
sively in terms of density matrices of lower rank and
encode information about n-body correlations in the
reference state [14]. For an independent-particle state, all

matrices except �ð1Þ vanish.
Products of normal-ordered operators can be expanded

by means of a generalized Wick theorem, e.g.,
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where �1
2 � �1

2 � �1
2 [16]. In addition to simple contrac-

tions containing �ð1Þ and �ð1Þ which also occur in the
standard Wick theorem, we obtain terms involving

�ð2Þ; . . . ; �ðnÞ. Each density matrix must have at least one
index from each of the operators in the product—other
terms vanish due to the initial normal ordering [Eq. (2)]
[14]. In the following, we work in natural orbitals, i.e., the

eigenbasis of �ð1Þ, where

�1
2 ¼ n1�

1
2; �1

2 ¼ � �n1�
1
2 � �ð1� n1Þ�1

2; (5)

and the eigenvalues are the occupation numbers
0 � na � 1.

We now consider the IM-SRG operator flow equation

d

ds
HðsÞ ¼ ½�ðsÞ; HðsÞ�: (6)

By integrating Eq. (6), we generate a continuous unitary
transformation that decouples the ground state of the
Hamiltonian HðsÞ from excitations, and solve the many-
body problem [12,13]. Suppressing the flow parameter s
for brevity, we apply the generalized normal ordering to H
and the generator�, and evaluate the commutator using the
generalized Wick theorem to obtain the MR-IM-SRG flow
equations:
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where E ¼ h�jHj�i, and the one- and two-body parts
of H, denoted by f and �, contain in-medium contri-
butions from the 3N interaction because of the
normal ordering [12,13]. The symbol ½� $ f;�� in
Eq. (8) indicates an interchange of the one- and two-
body parts of � and H. To close the system of flow
equations [Eqs. (7)–(9)], we truncate three-body operators
[13] and a term containing �ð3Þ in the energy flow equation
[Eq. (7)]. We refer to this truncation as MR-IM-SRG(2).

By integrating Eqs. (7)–(9), we perform a nonperturba-
tive resummation of the many-body perturbation series
[12,13]. The flowing two-body vertex is renormalization-
group improved by Eq. (9), e.g., with contributions from
generalized ladder (second sum) and ring diagrams (third
sum), which in turn generate corrections to the ground-
state energy when � is inserted in Eq. (7) [13].

As our default choice for the generator, we use the ansatz
of White [13,17]. The required matrix elements of the
Hamiltonian, such as h�jH:A12

34:j�i, which couple the

reference state to excitations, or h�j:A34
12:H:A12

34:j�i, which
enter the energy denominators, can be evaluated using the
generalized normal ordering. This yields

�1
2 ¼
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1
2
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1
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2
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12
12
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where

G12
34¼ �n1 �n2�

12
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34
34�ð �n1n3�13

13þ �n2n4�
24
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(12)

The dots in Eqs. (10) and (11) indicate terms that are linear

in �ð2Þ. Terms containing �ðn�3Þ or nonlinear powers of �ð2Þ
are truncated.
In cases where the flow stalls due to small energy

denominators, we use Wegner’s generator � ¼ ½H;Hod�
as a fallback, defining the one- and two-body parts of the
off-diagonal Hamiltonian Hod as

ðfodÞ12 ¼ �n1n2f
1
2 þ ½1 $ 2�;

ð�odÞ1234 ¼ �n1 �n2n3n4�
12
34 þ ½ð12Þ $ ð34Þ�:

(13)

This generator is free of numerical instabilities but less
efficient because the flow equations become stiff [12,13].
In the limit of a single Slater determinant reference state,
both generators reduce to the forms used for closed-shell
nuclei in Refs. [12,13].
We obtain a reference state for each nucleus by solving

the Hartree-Fock-Bogoliubov (HFB) equations, and pro-
jecting the resulting state on proton and neutron number
j�i ¼ PNPZjHFBi [18]. This choice allows us to enforce
spherical symmetry in calculations for even nuclei [19],
and greatly increases the single-particle basis sizes we can
treat. The natural-orbital basis of j�i is the usual canonical
basis of the HFB vacuum, allowing us to use analytic
expressions for the density matrices [20].
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The MR-IM-SRG method can be extended systemati-
cally by improving the truncation scheme: One would
include 3; . . . ; A-body operators when Eq. (6) is expanded
in normal-ordered components, as well as additional terms
involving irreducible density matrices. While the number
of flow equations is the same as in the single-reference case,
their complexity grows much more rapidly due to addi-
tional terms from the generalized normal ordering [12–14].

Calculation details.—Reference states for the MR-IM-
SRG calculation are obtained by solving the HFB equations
in 15major harmonic-oscillator (HO) shells, and projecting
the resulting state on good proton and neutron numbers
[13,21]. For the 3N interaction, the sum of the HO energy
quantum numbers of a 3N basis state is limited by e1 þ
e2 þ e3 � E3max ¼ 14, as discussed in Refs. [13,22].
Reducing E3max from 14 to 12 changes the MR-IM-SRG
(2) ground-state energies for oxygen isotopes by less than
1% for the Hamiltonians used in this work. The intrinsic
NN þ 3N Hamiltonian is normal ordered with respect to
the reference state, and the residual normal-ordered 3N
interaction term is discarded, leading to the normal-ordered
two-body (NO2B) approximation, which is found to over-
estimate oxygen binding energies by about 1% [13,22].

In this Letter, we use the same nuclear Hamiltonians as
in our recent IM-SRG and CC studies [13,22,23]: The NN
interaction is the chiral N3LO interaction by Entem and
Machleidt, with cutoff �NN ¼ 500 MeV=c [2,24]. Our
standard three-body Hamiltonian is a local N2LO 3N
interaction with initial cutoff �3N ¼ 400 MeV=c. The
resolution scale of the Hamiltonian is lowered to �SRG ¼
1:88; . . . ; 2:24 fm�1 by means of a SRG evolution in three-
body space [25–27]. Hamiltonians which only contain
SRG-induced 3N forces are referred to as NN þ
3N-induced Hamiltonians, those also containing an initial
3N interaction as NN þ 3N-full Hamiltonians.

In Fig. 1, we illustrate the convergence of the MR-IM-
SRG(2) ground-state energies for 18O and 26O with respect
to the single-particle basis size. At the optimal @�, the
change in the ground-state energy is 0.1%whenwe increase
the basis from emax ¼ 12 to 14. This rapid convergence is
representative for all Hamiltonians used in this work.

Results.—In Fig. 2, we show MR-IM-SRG(2) ground-
state energies of the even oxygen isotopes for NN þ
3N-full Hamiltonians with initial cutoffs �3N ¼ 350, 400,
and 450 MeV=c. For the 3N low-energy constants, we use
a fixed cD ¼ �0:2, and cE ¼ 0:205, 0.098, and �0:016,
respectively, which are fit to the 4He binding energy in
NCSM calculations [23,27]. For the NN þ 3N-full
Hamiltonian with �3N ¼ 400 MeV=c, we achieve an
excellent reproduction of experimental data all the way to
the neutron drip line at 24O [28], with deviations of 1%–2%.
Recent experiments place the 26O ground-state resonance at
Ex & 150 keV above the 24O ground-state energy [29,30].
We slightly overestimate this energy in our calculation
because the HO basis expansion of our single-particle

wave functions is ill suited to the description of resonances
and other continuum states. The inset in Fig. 2 illustrates
that the correct drip-line systematics is independent of �SRG

in the studied range and also robust against variations of
the cutoff�3N . This suggests that the long-range part of the
two-pion exchange (2PE) 3N interaction, which remains
unchanged as we lower �3N , is key to obtaining the proper
isotopic trends. The 2PE contribution has significant spin-
orbit and tensor terms, and is therefore important for the
evolution of the shell structure along the isotopic chain, as
also demonstrated in other studies, e.g., Ref. [31].
Let us now discuss the effect of varying the resolution

scale. As discussed in Refs. [13,22], the �SRG dependence of
our energies is the net result of omitted induced four-nucleon
(4N) interactions, the E3max cut, and the MR-IM-SRG(2)
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FIG. 1 (color online). Convergence of the MR-IM-SRG(2)
ground-state energies of 18O (a) and 26O (b) with respect to
the single-particle basis size emax, for the NN þ 3N-full
Hamiltonian at �SRG ¼ 2:0 fm�1.
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FIG. 2 (color online). Dependence of the MR-IM-SRG(2) oxy-
gen ground-state energies for the NN þ 3N-full Hamiltonian on
the resolution scale and the initial cutoff �3N . For each �3N , the
band is obtained by varying �SRG from 2.24 (open symbols) to
1:88 fm�1 (closed symbols). Experimental values are indicated
by black bars [28,36].
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truncation of the many-body expansion, while the effect of
theNO2Bapproximation is found to be independent of�SRG.

For �3N ¼ 350 MeV=c we do not expect significant
induced 4N interactions [27]. As �SRG is reduced, we
capture additional repulsive 3N strength in matrix elements
with e1 þ e2 þ e3 � E3max. We also speed up the conver-
gence of the many-body expansion and reduce the error due
to the MR-IM-SRG(2) truncation, but for the resolution
scales considered here, this effect is already saturated. In
total, we find a slight artificial increase of the ground-state
energies as we lower �SRG [13].

For our standard choice �3N ¼ 400 MeV=c, effects
from omitted 4N interactions, the E3max cut, and the
many-body truncation cancel, and the �SRG dependence
of the energies in Fig. 2 is extremely weak [13]. The
omission of 4N interactions becomes the dominant source
of uncertainty as we increase�3N to 450 MeV=c, resulting
in an enhanced �SRG dependence of the ground-state ener-
gies of the heavier oxygen isotopes. This is consistent with
the even stronger �SRG dependence for�3N ¼ 500 MeV=c
observed in Refs. [23,26,27].

To assess the quality of our MR-IM-SRG(2) ground-
state energies, we compare them to results from the
IT-NCSM, which yields the exact NCSM results within
quantified uncertainties from the importance truncation
[26,32]. In the IT-NCSM calculations, we use the full
3N interaction without the NO2B approximation, and the
E3max cut is naturally compatible with the IT-NCSM
model-space truncation [13]. In Fig. 3 we show the
convergence of the oxygen ground-state energies for the
NN þ 3N-induced and NN þ 3N-full Hamiltonians as a
function of Nmax, along with exponential fits which ex-
trapolate Nmax ! 1 [26,32,33]. With the exception of 26O,
all isotopes converge well, and the uncertainties of the
threshold and model spaces truncations of the IT-NCSM
results are typically about 1 MeV. For 26O, the rate of
convergence is significantly worse, which is expected due
to the resonance nature of this ground state.

The neutron-rich oxygen isotopes are the heaviest nuclei
studied so far in the IT-NCSMwith full 3N interactions. For
26O, the computation of the complete Nmax sequence shown
in Fig. 3 requires about 200 000 CPU hours. In contrast, a
corresponding sequence of single-particle basis sizes in the
MR-IM-SRG requires only about 3000 CPU hours on a
comparable system.Overall, themethod scales polynomially
with OðN6Þ to larger basis sizes N, which makes it ideally
suited for the description ofmedium- and heavy-mass nuclei.

In Fig. 4, we compare the MR-IM-SRG(2) and
IT-NCSM ground-state energies of the oxygen isotopes, for
the NN þ 3N-induced and NN þ 3N-full Hamiltonians
with �SRG ¼ 1:88 fm�1 to experiment. For the latter, the
overall agreement between the twovery differentmany-body
approaches and experiment is striking: Except for slightly
larger deviations in 12O and 26O, we reproduce experimental
binding energies within 2–3 MeV. This is a remarkable

demonstration of the predictive power of current chiral
NN þ 3N Hamiltonians, at least for ground-state energies.
For further confirmation, we perform CC calculations with
singles and doubles (CCSD), as well as perturbative triples
[�-CCSD(T)] [15,22,34,35] for oxygen isotopes with sub-
shell closures. Using the same Hamiltonians in the NO2B
approximation, the MR-IM-SRG energies are bracketed
by the CC results, and similar to the �-CCSD(T) values,
consistentwith the closed-shell results discussed inRef. [13].
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FIG. 3 (color online). IT-NCSM ground-state energies of the
even oxygen isotopes for the NN þ 3N-induced (a) and NN þ
3N-full Hamiltonians (b) at �SRG ¼ 1:88 fm�1. Solid lines in-
dicate the energy extrapolation based on Nmax ¼ 8–12 data;
dotted lines guide the eye for smaller Nmax. Uncertainties due
to the importance truncation are smaller than the symbols used to
represent the data. All energies are obtained at optimal @�.
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FIG. 4 (color online). Oxygen ground-state energies for the
NN þ 3N-induced (a) and NN þ 3N-full (b) Hamiltonian with
�3N ¼ 400 MeV=c. MR-IM-SRG(2), CCSD, and �-CCSD(T)
results are obtained at optimal @�, using 15 major oscillator
shells and E3max ¼ 14. The IT-NCSM energies are extrapolated
to infinite model space. Experimental values are indicated by
black bars [28,36].
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For the NN þ 3N-induced calculation, which should be
compared to calculations with the bare chiralNN interaction
[6], the reproduction of experimental trends fails, and the
neutron drip line is predicted at thewrongmass, because 26O
is bound with respect to 24O. This illustrates the crucial imp-
ortance of the chiral three-neutron interaction for a proper
description of the structure of neutron-rich nuclei [31].

Let us now address the uncertainties of our results. The
MR-IM-SRG(2) energies lie 1.5%–2% below the IT-NCSM
results. About 1% of this deviation is caused by the NO2B
approximation. The uncertainty due to the E3max cut is less
than 1% at low �SRG. While these uncertainties exhaust
the greater part of the 1.5%–2% deviation between the
MR-IM-SRG(2) and IT-NCSM results, and suggest a very
small uncertainty due to the many-body truncation, we
assume a more conservative many-body truncation error
of 1%–1.5%, and an overall uncertainty of our oxygen
energies at the level of 3%–3.5%, consistent with our
closed-shell IM-SRG calculations [13]. Because all irre-
ducible many-body density matrices vanish in closed-shell
nuclei, our findings indicate that the truncation of terms

containing �ðn�3Þ and nonlinear powers of �ð2Þ is negligible
compared to the truncation of induced three-body opera-
tors. A more detailed analysis of the MR-IM-SRG trunca-
tion scheme will be presented in a future publication.

Conclusions.—We have generalized the IM-SRG
approach to multireference states, and used the resulting
MR-IM-SRG method to perform the first ab initio study
of all even oxygen isotopes with chiral NN þ 3N
Hamiltonians, alongwith the IT-NCSMand the CCmethod.
The MR-IM-SRG results are in excellent agreement with
those from the other methods, confirming its reliability,
and the method’s modest computational demands make it
ideally suited for the description of medium- and heavy-
mass open-shell nuclei far from shell closures.

Our calculated oxygen ground-state energies agree
remarkably well with experimental binding energies
within theoretical uncertainties of 3%. This is achieved
without any readjustment of the interaction to experimental
data beyond 4He, and therefore constitutes an impressive
demonstration of the predictive power of chiral NN þ 3N
Hamiltonians. The present work also highlights the impor-
tance of the 3N interaction for the nuclear structure of
neutron-rich nuclei, as demonstrated by the robust repro-
duction of the oxygen drip line.
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and P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012).
[24] D. R. Entem and R. Machleidt, Phys. Lett. B 524, 93

(2002).
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[33] R. Roth and P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007).
[34] A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 044110

(2008).
[35] G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-

Jensen, Phys. Rev. C 82, 034330 (2010).
[36] G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys.

A729, 337 (2003).

PRL 110, 242501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
14 JUNE 2013

242501-6

http://dx.doi.org/10.1103/PhysRevLett.100.152502
http://dx.doi.org/10.1103/PhysRevLett.100.152502
http://dx.doi.org/10.1103/PhysRevLett.108.142503
http://dx.doi.org/10.1103/PhysRevLett.108.142503
http://arXiv.org/abs/1209.0156
http://dx.doi.org/10.1103/PhysRevLett.105.032501
http://dx.doi.org/10.1103/PhysRevC.79.064324
http://dx.doi.org/10.1103/PhysRevLett.99.092501
http://dx.doi.org/10.1063/1.2830236
http://dx.doi.org/10.1063/1.2830236
http://dx.doi.org/10.1103/PhysRevC.82.034330
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003

