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We show that the Dirac-Born-Infeld conformal galileons, derived from the world-volume theory of

a 3-brane moving in an anti–de Sitter bulk, admit a background, stable under quantum corrections, which

violates the null energy condition. The perturbations around this background are stable and propagate

subluminally. Unlike other known examples of null energy condition violation, such as ghost condensation

and conformal galileons, this theory also admits a stable, Poincaré-invariant vacuum. The 2 ! 2

amplitude satisfies standard analyticity conditions. The full S matrix is likely not analytic, however,

since perturbations around deformations of the Poincaré invariant vacuum propagate superluminally.
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The null energy condition (NEC) is the most robust of
all energy conditions. It states that, for any null vector n�,

T��n
�n� � 0: (1)

It has proven extremely difficult to violate this condition
with well-behaved relativistic quantum field theories.
Aside from being of purely theoretical interest, the NEC
plays a role in our understanding of the early universe. In
cosmology, Eq. (1) is equivalent to �þ P � 0, which,
combined with the equation for a spatially-flat universe,

M2
Pl

_H ¼ � 1

2
ð�þ PÞ; (2)

forbids a nonsingular bounce from contraction to expan-
sion. This means a contracting universe necessarily ends in
a big crunch singularity, and an expanding universe must
emerge from a big bang. Violating Eq. (1) is, therefore,
central to any alternative to inflation relying either on a
contracting phase before the big bang [1–5] or an expand-
ing phase from an asymptotically static past [6,7].

For theories with at most two derivatives, violating the
NEC necessarily implies ghosts or gradient instabilities
[8]. To evade this, one must, therefore, invoke higher
derivatives, as in the ghost condensate [9]. Perturbations
around the ghost condensate can violate the NEC in a
stable manner [10], and this has been used in the new
ekpyrotic scenario [11,12]. However, because the scalar
field starts out with a wrong-sign kinetic term, the theory is
unstable around its Poincaré-invariant vacuum.

Stable NEC violation can also be achieved with confor-
mal galileons [13], a class of conformally-invariant scalar
field theories with particular higher-derivative interactions.
Remarkably, in spite of the fact that there are five inde-
pendent galileon terms, only the kinetic term contributes to
Eq. (1) [14]: violating the NEC requires a wrong-sign kinetic
term, just like the ghost condensate. Another issue with
conformal galileons is superluminal propagation around
slight deformations of the NEC-violating background [7]

(though this can be avoided by explicitly breaking special
conformal transformations [14]).
In this Letter, we show that the DBI conformal galileons

[15,16] can also violate the NEC in a stable manner,
while avoiding nearly all of the aforementioned issues.
Specifically, the coefficients of the five Dirac-Born-Infeld
(DBI) galileons can be chosen such that: 1. There exists a
stable, Poincaré-invariant vacuum. 2. The 2 ! 2 scattering
amplitude about this vacuum obeys standard analyticity
conditions. 3. The theory admits a time-dependent, homo-
geneous, and isotropic solution which violates the NEC in
a stable manner. 4. Perturbations around the NEC-violating
background, and around small deformations thereof,
propagate subluminally. 5. This solution is stable against
radiative corrections.
In other words, starting from a local relativistic quantum

field theory defined around a Poincaré-invariant vacuum
state, the theory allows consistent, stable, NEC-violating
solutions. In fact, this NEC-violating background is an
exact solution of the effective theory, including all possible
higher-dimensional operators consistent with the assumed
symmetries.
We will see that the above conditions can be satisfied for

a broad region of parameter space. This represents a sig-
nificant improvement over ghost condensation (which fails
to satisfy 1 and 2) and the ordinary conformal galileons
(which fail to satisfy 1, 2, and 4). Unfortunately, like
conformal galileons, superluminal propagation around
deformations of the Poincaré invariant solution is inevi-
table. As a result, the full S matrix likely fails to be
analytic. Additionally, one would like the theory to be
consistent with black hole thermodynamics [17]. This is
currently under investigation [18].
The geometric origin of the DBI conformal galileon as

the theory of a 3-brane moving in an anti–de Sitter (AdS5)
bulk makes contact with stringy scenarios, offering a
promising avenue to search for NEC violations in string
theory.
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The theory.—Consider a 3-brane, with world-volume
coordinates x�, probing an AdS5 space-time with coordi-
nates XA and metric GABðXÞ in the Poincaré patch

ds2 ¼ GABdX
AdXB ¼ Z�2dZ2 þ Z2���dX

�dX�; (3)

where Z � X5, 0< Z<1. The dynamical variables
are the embedding functions, X�ðxÞ, ZðxÞ � �ðxÞ.
In unitary gauge, X� ¼ x�, the brane induced
metric is

g �� ¼ GAB@�X
A@�X

B ¼ �2��� þ��2@��@��: (4)

The DBI conformal galileons are five geometric invariants consisting of 4D Lovelock terms (L1, L2, and L4) and the
boundary terms of 5D Lovelock terms (L3 and L5):

L1 ¼ � 1

4
�4; L2 ¼ � ffiffiffiffiffiffiffi�g

p ¼ ���1�4; L3 ¼
ffiffiffiffiffiffiffi�g

p
K ¼ �6�4 þ�½�� þ �2��3ð�½�3� þ 2�7Þ;

L4 ¼ � ffiffiffiffiffiffiffi�g
p

R ¼ 12��1�4 þ ���2f½�2� � ð½�� � 6�3Þð½�� � 4�3Þg þ 2�3��6f�½�4� þ ½�3�ð½�� � 5�3Þ
� 2½���7 þ 6�10g;

L5 ¼ 3

2

ffiffiffiffiffiffiffi�g
p �

�K3

3
þ K2

��K � 2

3
K3

�� � 2G��K
��

�
¼ 54�4 � 9�½�� þ �2��5f9½�3��2 þ 2½�3� � 3½�2�½��

þ 12½�2��3 þ ½��3 � 12½��2�3 þ 42½���6 � 78�4g þ 3�4��9f�2½�5� þ 2½�4�ð½�� � 4�3Þ
þ ½�3�ð½�2� � ½��2 þ 8½���3 � 14�6Þ þ 2�7ð½��2 � ½�2�Þ � 8½���10 þ 12�13g: (5)

Here, � � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2=�4

p
is the Lorentz factor for the

brane motion, L1 measures the proper 5-volume between
the brane and some fixed reference brane [15], and L2 is
the world-volume action, i.e., the brane tension [19]. The
higher-order terms L3, L4, and L5 are functions of the
extrinsic curvature tensor K�� ¼ �ð���1@�@��þ
�2��� þ 3��2@��@��Þ and the induced Ricci tensor
R�� and scalar R, with G�� � R�� �Rg��=2 (and in-
dices raised by g��). Following [13],� denotes the matrix
of second derivatives @�@��, ½�n� � Trð�nÞ and ½�n� �
@��n�2@�, with indices raised by ���.

Each L is invariant up to a total derivative under the

soð4; 2Þ conformal algebra, inherited from the isometries

of AdS5. Aside from Poincaré transformations, Eq. (5) is

also invariant under dilation, �D� ¼ �ð1þ x�@�Þ�,

and special conformal transformations, �K�
� ¼ ð�2x�

�2x�x
�@� þ x2@� þ��2@�Þ�.

Around the Poincaré invariant vacuum.—Expanding

L ¼ P
5
i¼1 ciLi around a constant field profile, ��0, up

to quartic order in perturbations ’ ¼ �� ��0, we

obtain

L ¼ �C2

2
ð@’Þ2 þ C3

12 ��3
0

ð@’Þ2h’þ ð3C2 � C3Þ
24 ��4

0

ð@’Þ4 � C3

4 ��4
0

’ð@’Þ2h’þ C4

24 ��6
0

ð@’Þ2½ð@�@�’Þ2 � ðh’Þ2�;

C2 � c2 þ 6c3 þ 12c4 þ 6c5; C3 � 6c3 þ 36c4 þ 54c5; C4 � 12c4 þ 48c5; C5 � c5; (6)

where, in order for ��0 to be a solution, we have imposed
that the tadpole term vanish:

C1 � � 1

4
c1 � c2 � 4c3 þ 12c5 ¼ 0

ðPoincar�e solutionÞ: (7)

A necessary and sufficient condition for the stability of
small fluctuations is

C2 > 0 ðstabilityÞ: (8)

Next, the scattering Smatrix derived from Eq. (6) should
satisfy standard relativistic dispersion relations. Firstly, the
2 ! 2 amplitude in the forward limit must display a posi-
tive s2 contribution [20]. Only the ð@’Þ4 vertex contributes
in the forward limit—its coefficient must be strictly

positive [20,21]. There also exist constraints away from
the forward limit [22], which involve the ð@’Þ2h’ and
ð@’Þ2ð@�@�’Þ2 vertices [23]. These analyticity conditions,
respectively, impose

C3 < 3C2; C2
3 > 6C2C4 ðanalyticityÞ: (9)

NEC-violating solution.—We seek a time-dependent,
isotropic background solution of the form

�� ¼ �

ð�tÞ ; �1< t < 0; (10)

where � is a constant. This profile, which is central to
pseudoconformal [3,4,24] and Galilean Genesis [7] cos-
mology, spontaneously breaks the soð4; 2Þ algebra down
to an soð4; 1Þ subalgebra. Substituting Eq. (10) into the
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equation of motion for � derived from Eq. (5), we
obtain

C2þ1

2
C3	þ1

2
C4	

2þ6C5	
3 ¼ 0 ð1=tsolutionÞ; (11)

with 	 � ��� 1> 0, �� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
. There is a solu-

tion for each real, positive root of Eq. (11).
We require this background to be stable against small

perturbations. Expanding Eq. (5) to quadratic order in ’ �
�� ��, we obtain

Lquad;1=t ¼ Z
2

�
_’2 � ���2ð ~r’Þ2 þ 6

t2
’2

�
; (12)

where Z� ��3ðC2þC3	þ3C4	
2=2þ24C5	

3Þ. Absence of
ghosts, therefore, requires

C2 þ C3	þ 3

2
C4	

2 þ 24C5	
3 > 0 ðstabilityÞ: (13)

The sound speed is always subluminal, but for small defor-
mations away from the solution to satisfy condition 4, we
want the sound speed cs ¼ ���1 to be generously less than
unity. Thus, we demand

	 * 1 ðrobust subluminality around 1=tÞ: (14)

To check for NEC violation, we calculate the stress
tensor T�� by varying the covariant version of Eq. (5)

with respect to the metric. The covariant theory is given
uniquely by the brane construction [16], and is given by
Eq. (5) with the replacements ��� ! g�� and @� ! r�,

plus the following nonlinear couplings:

�L4 ¼ ���1R�2 þ 2���2R��r��r��

�L5 ¼ ð3=2ÞR��5f�4ð½�� � 4�3Þ þ �2ð�½�3� þ 2�7Þg
� 3��1R��r�r��þ 3�2��5R��

� ½ð4�3 � ½��Þr��þr
�r
r���r��

þ 3�2��5R�
��r��r��r
r��; (15)

where indices are now raised and lowered with g��, and we

assume an overall
ffiffiffiffiffiffiffi�g

p
factor. Since �L4;5 include non-

minimal couplings, we must be precise about our definition
of T�� and associated NEC. We couple this theory to

Einstein-Hilbert gravity and define T�� as the source of

G��, i.e., T�� � M2
PlG��. By matching this to a standard,

radiation-dominated phase, below, we will unambiguously
ascertain whether the NEC violation is ‘‘genuine’’ or sim-
ply an artifact of nonminimal couplings.

Varying the action with respect to the metric, and setting
�g�� ¼ ��� and �� ¼ �=ð�tÞ, yields an isotropic T��, with

vanishing energy density and pressure scaling as t�4 (as it
must by dilation invariance [5,7]),

� ¼ 0; P ¼ �2

t4
ðC2 � C4 þ 12C5Þ; (16)

where we have used Eq. (11) to simplify. To violate the
NEC, the pressure must be negative,

C2 � C4 þ 12C5 < 0 ðNEC violationÞ: (17)

Matching to standard cosmology.—Integrating Eq. (2),
we obtain aDBI Genesis cosmology, describing an expand-
ing universe from an asymptotically static state:

HðtÞ ¼ �ðC2 � C4 þ 12C5Þ �2

3M2
Plð�tÞ3 : (18)

For this to represent a useful NEC violation, we verify
that the DBI Genesis phase matches onto an expanding
radiation-dominated phase. We remain agnostic about the
reheating process; our main concern is whether the uni-
verse is expanding after the transition. In theories which
admit an Einstein frame, the condition below implies con-
tinuity of the Einstein frame H. Because of nonminimal
couplings, we instead find that H is discontinuous [14].

Indeed, the pressure is of the form: P ¼ Gð�; _�Þ þ
dFð�; _�Þ=dt. The G term is regular as � is brought
instantaneously to a halt, but the F term gives rise to a
delta function. Explicitly, we have

FðtÞ � �2

6ð�tÞ3
�
24C5 � 2C4 � ð2C4 � 60C5Þ	� 18C5	

2

� ðC3 � 3C4 þ 90C5Þ
�
��cosh�1 ��ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��

p ffiffiffiffi
	

p � 1

��
: (19)

Integrating Eq. (2) around the delta-function singularity,
we discover that Hþ F=2M2

Pl matches continuously at the

transition. Hence, we obtain the matching condition:

HGenesis þ F

2M2
Pl

¼ Hrad:�dom:: (20)

Combining Eqs. (18) and (19), we find that the universe
will be expanding in the radiation-dominated phase if

2C2 þ ð2C4 � 60C5Þ	þ 18C5	
2

þ ðC3 � 3C4 þ 90C5Þ
�
��cosh�1 ��ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��

p ffiffiffiffi
	

p � 1

�
< 0

ðmatchingÞ: (21)

Summary of conditions.—We started out with five coef-
ficients, C1; . . . ; C5. Stability of the Poincaré-invariant vac-
uum sets C1 ¼ 0 and (without loss of generality) C2 ¼ 1.
This leaves us with three coefficients, C3, C4, and C5,
which must be chosen such that the cubic equation
Eq. (11) has a real root with	 * 1 [per Eq. (14)], and which
must satisfy the inequalities Eqs. (9), (13), (17), and (21).
All these conditions can be satisfied even with C5 ¼ 0.

With C2 ¼ 1, the first inequality in Eq. (9) gives C3 < 3,
while Eq. (17) simplifies to C4 > 1. The equation of mo-
tion Eq. (11) reduces to a quadratic equation, with roots

	� ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
3 � 8C4

q
� C3Þ=2C4. It is easy to check that

PRL 110, 241303 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
14 JUNE 2013

241303-3



only	þ can lead to a stable 1=t solution. In order for	þ to
be real and * 1, we must require C2

3 > 8C4 and C3 &
�ð2þ C4Þ. With these conditions, Eq. (13) and the second
inequality of Eq. (9) are automatically satisfied. The only
remaining constraint is Eq. (21). Figure 1 shows (in white)
the allowed region of (C3, C4) parameter space satisfying
all of our constraints. Generalizing the analysis to C5 � 0
only widens the allowed region.

Quantum stability.—We now argue that the NEC-
violating solution is robust against other allowed terms
in the effective theory, i.e., all diffeomorphism invariants
of the induced metric and extrinsic curvature. Using
the Gauss-Codazzi relation R���� ¼ 2=3ðg��g�� �
g��g��Þ þ K��K�� � K��K�� to eliminate all instances

ofR���� in favor ofK��, we see that the DBI galileons are

particular polynomials in K��. As argued in the appendix

of [25], however, any polynomial in K�� can be brought to

the galileon form through field redefinitions.
It remains to consider terms with covariant derivatives

acting on K��, such as K��hK��. Since �K�� ¼ � �� �g��

on the 1=t background, it is annihilated by r, so these
higher-derivative terms do not contribute to the equation of
motion for the 1=t ansatz. Hence, the 1=t solution is an
exact solution, including all possible higher-derivative
terms in the effective theory.

These higher-derivative terms do contribute to perturba-
tions, but it is technically natural to set their coefficients to
zero if there is a hierarchy,C3 � 	,C2 � C4 �Oð1Þ,C5 �
1=	, where 	 � 1 (� ’ 1). This corresponds to relativis-
tic brane motion. The solid curve in Fig. 1, corresponding
to C4 ’ �C3=	 for 	 � 1, shows that all of our con-
straints can be satisfied for arbitrarily large 	. In the limit
of large jtj, the theory of perturbations is approximately the
same as that about a constant background. Consequently,
the fluctuation Lagrangian takes the form Eq. (6), where

now ��0 is Eq. (10), except that every spatial gradient is
multiplied by a factor of the sound speed, 1= �� ’ 1=	. A
computation shows that the coefficient of an Oð’nÞ term
scales as 	2nþ1. The (ordinary) galileon terms are sup-
pressed by the lowest scale in the theory

�s � 	1=6t�1 ’ 	1=6 ��ðtÞ; (22)

which we identify as the strong coupling scale. We now
study the limit 	 ! 1, jtj ! 1, keeping �s fixed. Only
the ordinary galileon terms [13] survive, with spatial gra-
dients suppressed by �, so we scale them in taking the limit
so that the limiting theory looks Lorentz invariant. Because
of the galileon nonrenormalization theorem [26–28], it
follows that if we work at finite 	, radiative corrections
to C1; . . . ; C5 must be suppressed by powers of 1=	, so the
hierarchy we have set up is stable. Loop corrections also
produce higher-derivative terms suppressed by �s, but
these are consistently small at low energy so we have a
derivative expansion in @=�s.
Finally, we discuss the issue of superluminality around

the Poincaré-invariant vacuum � ¼ ��0. With C3 � 0,
weak deformations of this background exhibit superlumi-
nal propagation [23]. (Our conditions cannot be simulta-
neously satisfied withC3 ¼ 0.) Following the arguments of
[23], superluminal effects can be consistently ignored in

the effective theory if the cutoff is sufficiently low: �0 &
��0=

ffiffiffiffiffiffiffiffiffijC3j
p � ��0=

ffiffiffiffi
	

p
. By relativistic and conformal invari-

ance, the cutoff around any background scales as ��
�=�. For consistency of our analysis, the lowest allowed
cutoff around the NEC-violating solution is set by the mass
of ’, namely 1=jtj. This implies �0 � 	 ��0; hence, super-
luminal effects lie within the effective theory.
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