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It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing

about 0.39 to what is reported as the effective number of neutrino types in the era before recombination.

The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation

of the particles of dark matter.
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The correlations of temperature fluctuations in the
cosmic microwave background depend on the effective
number Neff of neutrino species present in the era before
recombination. Although observations are certainly con-
sistent with the expected value Neff ¼ 3, there have been
persistent hints in the data that the effective number may
be somewhat greater. WMAP9 together with ground-based
observations (WMAP9þ eCMB) [1] gave Neff ¼ 3:89�
0:67, while Planck together with the WMAP9 polarization
data and ground-based observations (PlanckþWPþ
highL) [2] gives Neff ¼ 3:36� 0:34, both at the 68%
confidence level. Is it possible that some nearly massless
weakly interacting particle is masquerading as a fractional
cosmic neutrino?

As a candidate for an imposter fractional neutrino, one
naturally thinks of Goldstone bosons, associated with the
spontaneous breakdown of some exact or nearly exact
global continuous symmetry. They would, of course, be
massless or nearly massless, and the characteristic deriva-
tive coupling of Goldstone bosons would make them
weakly interacting at sufficiently low temperatures.

Since Fermi statistics reduces the energy density of
neutrinos relative to massless bosons by a factor 7=8, and
Neff lumps antineutrinos with neutrinos, a neutral Goldstone
boson might look like ð1=2Þ=ð7=8Þ ¼ 4=7 of a neutrino. But
for this to be true, there is an important qualification: the
Goldstone bosons must remain in thermal equilibrium with
ordinary particles until after the era of muon annihilation,
so that the temperature of the Goldstone bosons matches
the neutrino temperature. If Goldstone bosons went out of
equilibrium much earlier, then neutrinos but not Goldstone
bosons would have been heated by the annihilation of the
various species of particles of the standard model (SM), and
the contribution of Goldstone bosons toNeff would be much
less than 4=7. As we shall see, there is a plausible inter-
mediate possibility that the contribution of Goldstone

bosons to Neff would be ð4=7Þð43=57Þ4=3 ¼ 0:39. To judge
when the Goldstone bosons went out of thermal equilibrium,
we need a specific theory [3].

We will consider the simplest possible broken continu-
ous symmetry, a Uð1Þ symmetry associated with the
conservation of some quantum number W. All fields of

the standard model are supposed to have W ¼ 0. To allow
in the simplest way for the breaking of this symmetry, we
introduce a single complex scalar field �ðxÞ, neutral under
SUð3Þ � SUð2Þ �Uð1Þ, which carries a nonvanishing
value of W. With this field added to the standard model,
the most general renormalizable Lagrangian is

L ¼ � 1

2
@��

y@��þ 1

2
�2�y�� 1

4
�ð�y�Þ2

� g

4
ð�y�Þð’y’Þ þLSM; (1)

where �2, g, and � are real constants; LSM is the usual
Lagrangian of the standard model; and’ ¼ ð’0; ’�Þ is the
standard model’s scalar doublet. Experience with the linear
� model shows that with a Lagrangian like (1), there are
several diagrams in each order of perturbation theory that
must be added up in order to give matrix elements that
agree with theorems governing soft Goldstone bosons. To
avoid this, it is better to separate a massless Goldstone boson
field �ðxÞ and a massive ‘‘radial’’ field rðxÞ by defining

�ðxÞ ¼ rðxÞe2i�ðxÞ; (2)

where rðxÞ and �ðxÞ are real, with the phase of �ðxÞ
adjusted to make h�ðxÞi ¼ 0. (The 2 in the exponent is
for future convenience.) The Lagrangian (1) then takes the
form
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The SUð2Þ �Uð1Þ symmetry of the standard model is of
course broken by a nonvanishing vacuum expectation
value of the field ’0, with a real zeroth-order value h’i ’
247 GeV. The Uð1Þ symmetry of W conservation is also
broken if ð�2 � gh’i2Þ=� is positive, in which case r gets a
real vacuum expectation value, given in zeroth order by

hri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

r=2�
q

; m2
r � �2 � gh’i2=2: (4)

In this formalism, the interaction of Goldstone bosons
with the particles of the standard model arises entirely from
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a mixing of the radial boson with the Higgs boson. There is
a term �gh’ihri’0r0 in the Lagrangian (3), where r0 �
r� hri and ’0 � Re’0 � h’i, so that the fields describing
neutral spinless particles of definite nonzero mass are
not precisely ’0 and r0, but instead cos�’0 þ sin�r0 and
� sin�’0 þ cos�r0, with the mixing angle given by

tan2� ¼ gh’ihri
m2

’ �m2
r

: (5)

Since only one Higgs boson has been discovered at
CERN [4], with what appear to be the production rate
and decay properties expected in the standard model, this
mixing must be weak. We will make the assumption that
j tan2�j � 1, and return soon to the question of whether
this is plausible.

This ’-r mixing allows the Higgs boson to decay into a
pair of Goldstone bosons. The fourth term in (3) contains
an interaction ð1=2hriÞr0@��0@��0, where �0 � 2hri� is

the canonically normalized Goldstone boson field.
Together with one vertex of the mixing term �gh’i�
hri’0r0, this gives a partial width

�’!2� ¼ g2h’i2m3
’

16�ðm2
’ �m2

rÞ2
: (6)

Taking h’i ¼ 247 GeV, m’ ¼ 125 GeV, and assuming

m’ � mr, this partial width is 9:7g2 GeV. The

Goldstone bosons interact very weakly with particles of
the standard model, so these decays would be unobserved.
But under the assumption that the production and decays of
the Higgs boson are correctly described by the standard
model aside perhaps from decay into some new unob-
served particles, the branching ratio for decay into new
unobserved particles is known to be less than about 19%
[5], so with a Higgs width of about 4 MeV, the partial width
(6) must be less than 0.8 MeV, and therefore jgj< 0:009.
With g this small, and again assuming that m’ � mr,

the mixing parameter (5) is indeed much less than one,
provided that hri is much less than 7 TeV, which seems not
implausible.

Now, back to the problem of when the Goldstone bosons
cease being in thermal equilibrium with the particles of
the standard model. The joint action of the previously
discussed terms �ð1=2hriÞr0@��0@��0 and �gh’ihri’0r0

in the Lagrangian (3) produces an effective interaction
between low-energy Goldstone bosons and any fermion
F of the standard model:
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At a temperature T, the derivatives in Eq. (7) yield factors
of order kT, and the number density of any particle
with mass of order kT or less is of order ðkTÞ3, so the
rate of collisions of Goldstone bosons with any species of

fermion F with mass mF at or below kT is of order

g2m2
F ðkTÞ7=m4

rm
4
’. The expansion rate of the Universe is

of order ðkTÞ2=mPL where mPL is the Planck mass, so the
ratio of these two rates is

collision
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4
’
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This is a crude estimate, but the ratio decreases so rapidly
with temperature that it gives a fair idea of when the
Goldstone bosons go out of equilibrium.
As mentioned earlier, if Goldstone bosons go out of

equilibrium before kT falls below the mass of most of
the particles of the standard model, then the neutrinos
(which are in thermal equilibrium at these temperatures)
will be heated by the annihilation of standard model
particles while the Goldstone bosons will not, and the
contribution of Goldstone bosons to Neff will be much
less than 4=7. But suppose that Goldstone bosons go out
of equilibrium while kT is still above the mass of muons
and electrons but below the mass of all other particles
of the standard model, a time when neutrinos are still
in thermal equilibrium. The cosmic entropy density
just before the annihilation of muons, taking account
of photons, muons, electrons, and three species of
neutrinos, is

s ¼ 4aBT
3
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;

while after muon annihilation it is

s ¼ 4aBT
3
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4
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8

�
;

where aB is the radiation energy constant. The constancy
of the entropy per comoving volume sa3 tells us that for
particles like neutrinos that are in thermal equilibrium,

Ta must increase by a factor ð57=43Þ1=3, while for free
Goldstone bosons Ta is constant, so that Goldstone
bosons make a contribution to the measured Neff equal

to ð4=7Þð43=57Þ4=3 ¼ 0:39, which at least for the present
seems in good agreement with observation. For this to be
the case, the ratio (8) must equal unity when mF ¼ m�

and kT � m�, so that

g2m7
�mPL

m4
rm

4
’

� 1: (9)

For instance, with g ¼ 0:005 and m’ ¼ 125 GeV, this

tells us that mr � 500 MeV. [In order for the Goldstone
bosons to go out of equilibrium when the only massive
standard model particles left are electrons and positrons,
in which case they make a contribution to Neff equal
to 4=7, the value of mr would have to be less than
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given by Eq. (9) by a factor between ðme=m�Þ1=2 and

ðme=m�Þ7=4].
Another consequence of the term�ð1=2hriÞr0@��0@��0

in the Lagrangian is that the massive r bosons decay
rapidly into Goldstone boson pairs. Even for hri as large
as 7 TeV, and taking mr ¼ 500 MeV, the radial boson
lifetime would be at most of order 10�16 s, so they
would be long gone at any era with which we are
concerned here.

We can further speculate about the physical significance
of the assumed broken Uð1Þ symmetry. There is no room
for a new broken global symmetry in the standard model,
so it natural to think of a symmetry associated with parti-
cles not described by the standard model, but known to
be abundant in the Universe—that is, with dark matter.
We will now assume that the conserved quantum number
W associated with the global Uð1Þ symmetry introduced
above is the WIMP number, the number of weakly inter-
acting massive particles minus the number of their anti-
particles. We introduce a single complex Dirac WIMP field
c ðxÞ, carrying WIMP quantum numberW ¼ þ1, and give
the scalar field �ðxÞ WIMP quantum number W ¼ þ2, so
that its expectation value leaves an unbroken reflection
symmetry c ! �c . All the fields of the standard model
are again assumed to have W ¼ 0. The most general
renormalizable term involving the WIMP field that can
be added to the Lagrangian (1) is

Lc ¼ � �c��@�c �mc
�c c � f

2
c cc�y � f	

2
�c c c�;

(10)

where c c is the charge-conjugate field [that is, c c is the
complex conjugate of c , multiplied by a matrix C�1	 (in
the notation of Ref. [6]) that gives c c the same Lorentz
transformation properties as c ]; mc and f are constants;

and by a choice of phase of c we can make f as well asmc

real. If together with the definition (2), we define a field
c 0ðxÞ by

c ðxÞ ¼ c 0ðxÞei�ðxÞ; (11)

the WIMP Lagrangian (10) then becomes

Lc ¼ �c 0��@�c
0 �mc c

0c 0 � ic 0��c 0@��

� f

2
c 0cc 0r� f

2
c 0c 0cr: (12)

Because r has a nonzero vacuum expectation value hri, the
WIMP fields with definite mass are a pair of self-charge-
conjugate fields

c�ðxÞ ¼ 1ffiffiffi
2

p
�
c 0ðxÞ � c 0cðxÞ

�
; (13)

with masses

m� ¼ mc � hrif: (14)

The part of the Lagrangian that involves the WIMP fields
can then be put in the form

Lc ¼ � 1

2

X
�
½c���@�c� þm�c�c�


� i

2
½cþ��c� þ c���cþ
@��

� f

2
r0½cþcþ þ c�c�
; (15)

where again, r0 � r� hri.
We see that instead of one Dirac WIMP, there are two

MajoranaWIMPs of different mass. But the heavier WIMP
will decay into the lighter one by emitting a Goldstone
boson, while the lighter one is kept stable by an unbroken
reflection symmetry, so in this theory we can expect
that the present Universe will contain only one kind of
Majorana WIMP, the lighter one w, with mass mw equal to
the smaller of m�.
The r-’ mixing allows the Higgs boson to decay into

pairs of the lighter WIMPs, if they are lighter than m’=2.

In this case, the partial width for this decay is

�’!2w ¼ 1

32�

�
fghrih’i
m2

’ �m2
r

�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
’ � 4m2

w

q
: (16)

As we have seen, observations require this to be less than
about 0.8 MeV. Takingmr and 2mw much less thanm’, this

condition tells us that the WIMP mass splitting �m �
jmþ �m�j ¼ 2jhrifj satisfies jgj�m< 3:2 GeV, a
constraint that will be useful in what follows.
The surviving WIMPs can annihilate in pairs through

their interaction with Goldstone bosons and with the field
r0, which mediates interactions both with Goldstone and
radial bosons and with the particles of the standard
model. It is well known that in order for annihilation of
WIMPs to give a dark matter density like that observed,
it is necessary for the annihilation cross section to
satisfy [7]

mw

�
2�

Ph�vi
G2

wkm
2
w

�
0:51 ’ 3:7 GeV� ð2�Dh

2Þ�0:54 ’ 9 GeV;

(17)

where �Dh
2 ’ 0:105 is the usual dark matter density

parameter; the sum is taken over all annihilation chan-
nels; and Gwk ’ 10�5 GeV�2 is the weak coupling
constant. In what follows we will simplify our estimates
by replacing the exponent 0.51 with 1=2.
One possibility is annihilation into a quark q and its

antiparticle. The combination of the interactions

fc�c�r0, the mixing term �gh’ihri’0r0, and the stan-
dard model interaction ðmq=h’iÞqq’0 gives an effective
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cross section for annihilation of cold WIMP pairs into a
relativistic quark q and its antiquark:

Xh�vi ¼ 3

2�

�
gmqmw�m

2ð4m2
w �m2

rÞð4m2
w �m2

’Þ
�
2
; (18)

in which we have used Eq. (14) to express jhrifj as �m=2.
For heavy WIMPs, with mw much larger than the mass

mt of the top quark, the quark produced in WIMP annihi-
lation would be the top quark, in which case Eq. (17) (with

2mw much larger thanmr andm’) requires that�m=mw ¼
32m2

wGwk=
ffiffiffi
3

p jgjmt � 9 GeV � 32, requiring jmc j and

jhrifj to differ by much less than 6%.
The fine-tuning problem is worse for mt > mw �

m’=2. In this case the quark produced in WIMP annihila-

tion would be the bottom quark, and Eq. (17) requires that

�m=mw ¼ 32m2
wGwk=

ffiffiffi
3

p jgjmb � 9 GeV � 160, which
would require jmc j and jhrifj to differ by much less

than 1%.
The casem’ � 2mw � mr is even less promising. In this

case, Eq. (17) gives mw ’ ffiffiffi
3

p
mqjgj�m=8m2

’Gwkð9 GeVÞ.
With the previously derivedupper bound jgj�m< 3:2 GeV,
this requires thatmw < 0:49mq, which is clearly impossible

if cold w pairs are to annihilate into qþ �q.
It appears that if �m and mw are of comparable

magnitude, then the annihilation of these WIMPs into
quarks may not be sufficiently fast to bring the dark
matter density down to the observed value. Inclusion of
annihilation into leptons helps this problem, but appar-
ently not enough. Annihilation into gauge bosons may
be more significant, as appears in a different theory [8].
Of course, we could make the annihilation cross section
as large as we like by taking 2mw sufficiently close to m’

(or mr). The dominant annihilation could be into pairs of
Goldstone bosons (and perhaps radial bosons). The cross
section here is of order f4=m2

w, so condition (17) would
require that mw � 104f2 GeV.

Unfortunately, there are too many free parameters here
to allow a definite conclusion whether the density of
WIMPs in this theory does or does not match the observed
density of dark matter.
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