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The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the

Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical

general relativity, one of the most important and challenging open problems in black-hole perturbation

theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of

the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by

working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any

value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar

perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is

accurate within 3% for spins J=Jmax & 0:5, where Jmax is the maximum allowed spin for any value of Q.

Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic

perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat

space-times could be useful in the context of gauge-gravity dualities and string theory.

DOI: 10.1103/PhysRevLett.110.241103 PACS numbers: 04.70.Bw, 04.25.Nx, 04.30.Db

Introduction.—In Einstein-Maxwell theory, black holes
(BHs) that are stationary, asymptotically flat end states of
gravitational collapse must be axisymmetric [1]. Classic
uniqueness theorems reviewed in Ref. [2] show that regu-
lar, stationary electrovacuum BH space-times in four
dimensions are described by the Kerr-Newman (KN) met-
ric [3], characterized by mass M, angular momentum J,
and electromagnetic charge Q. When Q ¼ 0 the KN
solution reduces to the Kerr metric, and for J ¼ 0 it
reduces to the Reissner-Nordström (RN) metric. When
both Q and J are nonvanishing the space-time is endowed
with an induced magnetic field, and its magnetic dipole
moment corresponds to the same gyromagnetic ratio g ¼ 2
as the electron [4]. This observation led to some specula-
tion that the KN metric could be used as a classical model
for elementary particles (see, e.g., Ref. [5]).

Charge is unlikely to play a significant role in astrophys-
ics [6,7], but the KN metric is still a precious theoretical
laboratory to investigate Einstein-Maxwell theory in
curved space-time. For this reason the linearized dynamics
of test fields on a KN background have been intensively
studied in the past. The scalar [8], neutrino [9], massive
spin-1=2 [10,11], and Rarita-Schwinger [12] equations in
the KN metric can all be solved by separation of variables.
The scattering of charged scalars and fermions in near-
extremal KN space-times recently acquired special interest
in the context of the KN/conformal field theory (KN/CFT)
conjecture [13,14].

The KN space-time is one of the simplest prototypes of
the interplay between matter and curvature summarized by
Wheeler’s famous statement that ‘‘matter tells space-time
how to curve, and space-time tells matter how to move.’’
Despite their importance, theoretical investigations of the
interplay between gravitational and electromagnetic per-
turbations in the KN metric are still in their infancy. The
reason is a major technical stumbling block: most methods
to compute quasinormal modes (QNMs, see Refs. [15–18]
for reviews), graybody factors, and scattering amplitudes
rely on separability, and despite several attempts [19–21],
at present no one has been able to separate the angular
and radial dependence of the gravitoelectromagnetic eigen-
functions. The last chapter of Chandrasekhar’s monumental
1983 monograph [22] is dedicated to an incomplete treat-
ment of this problem. Quoting from Ref. [22]: ‘‘It does not
appear that the methods developed ½. . .� for the treatment
of the gravitational perturbations of the Kerr [black hole]
can be extended in any natural way to the treatment of
the coupled electromagnetic and gravitational perturbations
of the KN [black hole]. The origins of this apparently
essential difference in the perturbed Kerr and KN space-
time may lie deep in the indissoluble coupling of the spin-1
and spin-2 fields in the perturbed KN space-time—a cou-
pling which it was possible to break only for very special
reasons in the perturbed RN space-time’’.
This work is the first consistent analysis of gravitoelec-

tromagnetic perturbations of KN BHs. We circumvent the
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decades-old coupling problem using a recent framework
to study generic perturbations of spinning BHs in the slow-
rotation limit [23,24], which is based on a similar approach
used in the past to study slowly rotating compact stars
[25–28]. We summarize here some of our most interesting
findings. (i) We present the first self-consistent calculation
of scalar, electromagnetic. and gravitational QNMs of the
KN metric. (ii) Since none of these modes is unstable,
our calculation provides solid evidence for the stability
of the (nonextremal) KN metric. (iii) In the scalar case
we can compare our results to an exact calculation that
does not rely on the slow-rotation limit. We find that the
perturbative analysis is valid when J=Jmax � 1 (where
Jmax is the maximum allowed spin for any given Q) and
that scalar QNM frequencies are accurate within 3%
for spins J=Jmax & 0:5, which suggests a similar level of
accuracy for the gravitoelectromagnetic modes. (iv) Last
but not least, we find the remarkable result that axial and
polar QNMs (corresponding to perturbations that have odd
or even parity, respectively) are isospectral to linear order
in the spin.

Formalism.—The KN metric is the most general
stationary electrovacuum solution of Einstein-Maxwell
theory. Its full form in Boyer-Lindquist coordinates can
be found, e.g., in Ref. [22]. Here and in the following we
linearize all quantities in the spin parameter ~a � a=M �
J=M2 (in geometrical units G ¼ c ¼ 1), neglecting terms
of order Oð~a2Þ. To this order, the KN metric reads

ds20 ¼ �Fdt2 þ F�1dr2 � 2$sin2#d’dtþ r2d2�; (1)

whereFðrÞ ¼ ðr� r�Þðr� rþÞ=r2, r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p

are the horizons of a RN BH, the gyromagnetic term is

$ðrÞ ¼ 2~aM2=r� ~aQ2M=r2; (2)

and the background electromagnetic potential is given by

A� ¼
�
Q

r
; 0; 0;� ~aQM

r
sin2#

�
: (3)

Note that the presence of both rotation and charge (~aQ � 0)
induces a magnetic field in the (#, ’) directions.

We derive the equations describing gravitoelectromag-
netic oscillations in the slow-rotation approximation by
linearizing the Einstein-Maxwell equations with respect
to both the oscillation amplitude and the BH spin parame-
ter ~a, and by expanding the perturbations in a complete
basis of tensor spherical harmonics. As a consequence of
using this basis in a nonspherical background, the linear-
ized equations display mixing between perturbations with
different harmonic indices and opposite parity [23–25,27].
However, the latter do not contribute to the QNM spectrum
to first order in ~a [24,26,29].

Our main analytical result consists of two sets of
coupled, second-order equations (one for the axial and
one for the polar sector, respectively) which fully describe
gravitoelectromagnetic oscillations of a KN BH to first

order in the spin. In the frequency domain, and assuming
a time dependence e�i!t, they read (schematically)

D̂Z�
i � Vði;�Þ

0 Z�
i þm~a½Vði;�Þ

1 Z�
i þ Vði;�Þ

2 Z�0
i �

þm~aQ2½Wði;�Þ
1 Z�

j þWði;�Þ
2 Z�0

j �; (4)

where i, j ¼ 1, 2, i � j (there is no sum over the indices

i, j), we have defined the differential operator D̂ ¼ @2r� þ
!2 � F‘ð‘þ 1Þ=r2, and r� is the standard tortoise coor-
dinate, such that @r�r ¼ F. The functions Z�

i and Zþ
i are

linear combinations of axial and polar variables, respec-
tively, and they are also combinations of gravitational and
electromagnetic perturbations.

The explicit form of the axial and polar potentials Vði;�Þ

and Wði;�Þ is quite formidable. It will be presented in the
accompanying paper [30] and in a publicly available
MATHEMATICA notebook [31]. What matters is that

Eq. (4) display the same symmetries as the master equa-
tions for a RN BH [22], and indeed they exactly reduce to
the latter in the nonrotating case. In addition, Eq. (4)
contain two first-order corrections in ~a. The first term is
responsible for a Zeeman-like splitting of the eigenfre-
quencies, which breaks the degeneracy in the azimuthal
index m. The second line in Eq. (4) is more interesting:
this term couples the function Zþ

1 with the function Zþ
2 , and

the function Z�
1 with the function Z�

2 .
Once physically motivated boundary conditions are

imposed, Eq. (4) defines an eigenvalue problem for the
complex frequency ! ¼ !R þ i!I. The boundary condi-
tions for QNMs read simply

Z�
j ðrÞ �

�
ei!r� ; r ! 1
e�ið!�m�HÞr� ; r ! rþ

: (5)

The near-horizon solution displays the typical frame-
dragging effect occurring near spinning BHs, where

�H � ~a

Mð1þ ~amaxÞ2
þOð~a3Þ (6)

is the angular velocity at the horizon of locally nonrotating

observers, and ~amax � Jmax=M
2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðQ=MÞ2p
is the

maximum spin parameter of a KN BH.
Numerical results.—The numerical solution of the axial

and polar perturbation equations [Eq. (4)] is challenging,
because their explicit form is very complicated [30,31].
Robust numerical methods to solve the coupled eigenvalue
problem given by Eq. (4) with the boundary conditions
[Eq. (5)] are reviewed in Ref. [32]. We have integrated the
coupled system [Eq. (4)] and computed the corresponding
eigenfrequencies using two independent methods: a highly
efficient matrix-valued continued fraction technique and
direct integration [30,32]. When both methods are appli-
cable they validate each other, in the sense that the results
agree within numerical accuracy.
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For any given Q, our analysis allows us to extract the
first-order corrections to the complex QNM frequencies:

!R;I ¼ !ð0Þ
R;I þ ~am!ð1Þ

R;I þOð~a2Þ; (7)

where !ðiÞ
R;I are functions of Q and of the multipolar index

‘, whereas the m dependence has been factored out [24].
As a test of the slow-rotation approximation, we have

computed the scalar QNMs of a KN BH to first order in ~a.
These modes can be computed exactly in the Teukolsky
formalism [33], so they give us the precious opportunity
to estimate the errors introduced by the slow-rotation
approximation. For any stationary and axisymmetric
space-time, the scalar modes at first order in the angular
momentum are governed by a master equation [24] whose
corresponding eigenvalue problem can be solved with
standard continued-fraction techniques [34,35].

In Fig. 1 we show the relative error of the slow-rotation
approximation with respect to the ‘‘exact’’ result, com-
puted by solving the scalar equation in a KN background
via continued fractions [33]. In particular, the top (bottom)
panels show the percentage deviation� for the real (imagi-
nary) part of the fundamental ‘ ¼ m ¼ 1 scalar mode at
fixed values of Q. The slow-rotation approximation is
accurate within one percent as long as J=Jmax & 0:3, and
it is still accurate within 3% for J=Jmax & 0:5. Similar
results also hold for other values of ‘ and m, and for the
first few overtones [30]. Note the near-universal behavior
of the percentage errors as functions of J=Jmax ¼ ~a=~amax

for all values ofQ. Indeed the parameter ~amax, which appears
explicitly in the QNM boundary conditions [Eq. (5)], plays a
fundamental role in our perturbative scheme and the slow-
rotation approximation is accurate only far from extremality,

i.e., when ~a � ~amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2=M2

p
< 1.

Figure 2 shows our main numerical results for the
fundamental gravitoelectromagnetic perturbations with
‘ ¼ 2, the most relevant for gravitational-wave emission
(see, e.g., Ref. [36]). In each panel we show four curves,
corresponding to the axial and polar ‘‘gravitational’’ and
‘‘electromagnetic’’ modes (as defined in the decoupled limit,
Q ! 0). The zeroth-order terms shown in the left panels
are simply RN QNMs; they agree with continued-fraction
solutions [34] of the equations first derived by Zerilli [37].
We carried out a more extensive QNM calculation work-

ing in the axial case, where our results can be verified using
two independent methods. By virtue of the isospectrality
between axial and polar modes visible in Fig. 2 and dis-
cussed below, these results cover the whole QNM spectrum
of slowly rotating KN BHs. We found that the zeroth- and
first-order quantities shown in Fig. 2 (plus analogous cal-
culations for ‘ > 2 and the first overtones [30]) are well
fitted by functions of the form

!ð0;1Þ
R;I ¼ X4

k¼0

fky
k: (8)

Here we have defined a parameter y ¼ 1� ~amax, which is
in one-to-one correspondence with Q=M, but is better
suited for fitting. The coefficients fi for the fundamental
‘ ¼ 2 gravitoelectromagnetic modes are listed in Table I.
Stability.—None of our numerical searches (for 0<

Q<M, J � Jmax, and ‘ ¼ 2, 3, 4) returned exponentially
growing modes. This confirms early arguments by
Mashhoon in favor of the stability of the KN metric [38].
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FIG. 1 (color online). Top panel: percentage error � �
102j1�!slow=!exactj induced by the slow-rotation approxima-
tion in the real part of the fundamental ‘ ¼ m ¼ 1 scalar mode.
Bottom panel: percentage error for the imaginary part of the
same mode. The errors are only mildly sensitive to Q if plotted
as functions of J=Jmax, where Jmax is defined below Eq. (6).
Similar results hold for other scalar modes [30].
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Mashhoon’s results apply only to the eikonal limit (‘ � 1)
and they rely on a somewhat heuristic geodesic analogy,
rather than on a self-consistent treatment of the perturba-
tion equations. In this sense, our QNM calculations provide
the first, fully consistent numerical evidence for the stabil-
ity of the KN space-time.

Isospectrality.—Gravitoelectromagnetic perturbations
of Schwarzschild and RN BHs in general relativity have
a noteworthy property, first proved by Chandrasekhar [22]:
even though the polar and axial sectors of the perturbations
are described by completely different potentials, their
QNM spectra are identical [17]. Mathematically, this hap-
pens because the polar and axial potentials can be written
in terms of a single ‘‘superpotential’’ (cf. Secs. 26 and 43 of
Ref. [22]). This property can be interpreted as being due to
‘‘supersymmetry,’’ in the sense of nonrelativistic quantum
mechanics [39–41].

Isospectrality is easily broken: e.g., it does not hold if
the cosmological constant is nonzero [42–44], if the under-
lying theory is not general relativity [45,46], or in higher
dimensions (cf. Appendix A of Ref. [17]). The left panels
of Fig. 2 (which refer to the RN limit) show that polar and
axial modes are isospectral within our numerical accuracy.
Given the complex form of the polar equations, this is a
nontrivial check of our numerical techniques.

A priori, there is no reason why such a remarkable and
fragile symmetry should hold true also for rotating (KN)
BHs. A tantalizing result of our numerical study is strong
evidence that the axial and polar sectors of KN gravitoe-
lectromagnetic perturbations are indeed isospectral to first
order in the BH spin. The left panels of Fig. 2 show that the

linear corrections !ð1Þ
R;I are identical functions of Q for

axial and polar modes within the numerical errors (which
are dominated by uncertainties in the direct integration
used to compute polar modes). Various arguments can be

made to support the claim that the observed deviations
from isospectrality are of a purely numerical nature.
(1) Isospectrality is verified to a higher level of accuracy
far from extremality: this is consistent with the fact that
QNMs are more challenging to compute in the extremal
limit. (2) The deviations from isospectrality shown in
Fig. 2 are roughly constant or decreasing functions of Q
(at least for Q & 0:8M) and they are affected by a small
residual error even when Q ¼ 0, where isospectrality must
hold exactly. (3) The direct integration method is more
accurate as ‘ grows and, correspondingly, the deviations
between axial and polar modes decrease. (4) Finally, we
verified that the error can be reduced by increasing the
accuracy of the integrator.
Outlook.—It is tempting to conjecture that the isospec-

trality we found at linear order may in fact hold exactly, at
all orders in rotation. In order to verify this hypothesis it
will be crucial to include effects of second order in the
spin—a formidable undertaking. At second order the
causal structure of a spinning metric starts differing from
the nonspinning case, and parity-mixing terms appear in
the perturbation equations [24]. If isospectrality were to
hold true also at second order, there would be no funda-
mental reason to believe that it should be broken at higher
orders. However, let us stress that isospectrality is a highly
nontrivial property even at linear order in rotation, in
view of the mixing of gravitational and electromagnetic
perturbations. Hopefully our work will stimulate further
studies to verify whether isospectrality is an exact property
of the KN space-time. Besides brute-force extensions of
our work to higher orders in rotation, other possible means
of studying this problem include numerical time evolutions
(cf. Refs. [47–49]) or analytical work, perhaps along the
lines of Ref. [41].
Other interesting extensions of this work concern asymp-

totically anti-de Sitter (AdS) space-times. Our approach can
be easily applied to compute the QNMs of (slowly rotating)
KN-AdS BHs. This would be useful in the context of the
AdS/CFT correspondence [50], which predicts that these
solutions are dual to thermal states of a CFT living in a
rotating Einstein universe [51,52].
Such an extension would also be interesting in the

context of supergravity. To clarify this point, let us recall
that the QNMs of asymptotically flat, extremal RN BHs
have a remarkable property: electromagnetic perturbations
with angular index ‘ are isospectral with gravitational
perturbations with index ‘þ 1 [53]. This is related to the
fact that, when embedded in N ¼ 2, four-dimensional
supergravity, these solutions preserve part of the super-
symmetry. Using this property, it is possible to prove that
the one-loop corrections to the BH entropy cancel [54]. In
the case of rotating, asymptotically flat BHs this reasoning
does not apply, since these solutions are not supersymmet-
ric. However, certain KN-AdS BHs embedded in N ¼ 2,
four-dimensional supergravity preserve half of the

TABLE I. Coefficients of the fit [Eq. (8)] for the real and
imaginary part of the fundamental (n ¼ 0) gravitoelectromag-
netic modes with ‘ ¼ 2. We denote by s ¼ 1 and s ¼ 2 the
modes that in the decoupled limit Q ! 0 are electromagnetic
and gravitational, respectively. The fits [Eq. (8)] reproduce the

data to within 1% for !ð1Þ
I , and to within 0.1% for the other

quantities, for any Q & 0:95M. Similar fits have comparable
accuracy also for ‘ > 2 and for the first overtone [30].

(‘,n,s) f0 f1 f2 f3 f4

!ð0Þ
R (2,0,1) 0.4576 0.2659 0.0118 0.1228 �0:1382

!ð1Þ
R (2,0,1) 0.0712 0.0769 0.0596 0.0727 �0:0216

!ð0Þ
I (2,0,1) �0:0950 �0:0184 0.0137 0.0132 0.0107

!ð1Þ
I (2,0,1) 0.0007 0.0043 0.0060 �0:0089 0.0366

!ð0Þ
R (2,0,2) 0.3737 0.0525 0.0607 �0:0463 �0:0070

!ð1Þ
R (2,0,2) 0.0628 0.0676 0.0209 0.0823 �0:0810

!ð0Þ
I (2,0,2) �0:0890 �0:0055 0.0024 0.0214 �0:0084

!ð1Þ
I (2,0,2) 0.0010 0.0014 0.0091 0.0174 0.0145
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supersymmetry [55,56]. Since these solutions can be
slowly rotating, the techniques developed in this Letter
could be used to extend the arguments of Ref. [54] to
supersymmetric KN-AdS BHs.

Last but not least, it would be interesting to extend our
calculation of KN QNMs in the context of the KN/CFT
conjecture [13,14], which predicts that the QNMs of the
near-horizon KN geometry correspond to the poles of the
retarded Green’s function of the dual chiral CFT [57].
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