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We present an efficient and general method to compute vortex-pinning interactions—which arise in

neutron stars, superconductors, and trapped cold atoms—at arbitrary separations using real-time dynam-

ics. This method overcomes uncertainties associated with matter redistribution by the vortex position and

the related choice of ensemble that plague the typical approach of comparing energy differences between

stationary pinned and unpinned configurations: uncertainties that prevent agreement in the literature on

the sign and magnitude of the vortex-nucleus interaction in the crust of neutron stars. We demonstrate and

validate the method with Gross-Pitaevskii–like equations for the unitary Fermi gas, and demonstrate how

the technique of adiabatic state preparation with time-dependent simulation can be used to calculate

vortex-pinning interactions in fermionic systems such as the vortex-nucleus interaction in the crust of

neutron stars.
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Vortex-pinning interactions play an important role in the
dynamics of various condensed superfluid systems such as
superconductors [1], trapped cold-atom gases [2], and
possibly neutron stars [3], where the angular momentum
carried by vortices can have an observable impact. For
example, pulsar glitches—sudden increases in the rotation
frequencies of neutron stars—are theorized [4] to arise
from a sudden macroscopic unpinning of vortices. In equi-
librium, the superfluid and nonsuperfluid components of a
pulsar rotate at the same angular frequency. The pulsar
loses angular momentum through magnetic radiation, and
the crust slows down gradually, reducing the pulsation rate.
To maintain equilibrium, the superfluid must also release
angular momentum by diluting the vortex concentration,
but the presence of pinning sites (nuclei, lattices sites,
defects, etc.) may arrest the vortex motion; stress would
build until a large number of vortices rapidly unpin, dilute,
and transfer their angular momentum to the crust, rapidly
increasing in the pulsation rate—the glitch.

Despite almost 40 years, the feasibility of this mecha-
nism is still poorly understood. The conventional picture
has the angular momentum stored by the neutron superfluid
in the crust, with pinning provided by nuclei held in a
lattice by the electrostatic (Coulomb) interaction. [Dilute
neutron matter is well approximated [5] by the same
unitary Fermi gas (UFG) produced in cold-atom experi-
ments [6]]. Pinning may also occur on flux tubes [7] or due
to vortex tangles [8]. Recent results suggest that the crustal
neutrons may not support enough angular momentum to
explain observed pulsar glitches [9], in which case the
interaction between neutron superfluid vortices and proton
flux tubes in the outer core [10] or quark matter phases in
the core may play a role [11]. In either case, a reliable
technique for calculating vortex-pinning interactions is

key. Here we present a dynamical method for determining
the sign and strength of vortex-pinning forces in super-
fluids, and demonstrate that this method can be directly
applied to unambiguously calculate the vortex-nucleus
interaction using time-dependent density functional theory
(TDDFT) for nuclear matter.
Because of the importance of pinning on glitch phe-

nomenology, several attempts have been made to calculate
the pinning force in nuclear matter from underlying micro-
scopic models. The earliest calculations used the conden-
sation energy to estimate the pining force [4,12]. In
Ref. [13], the Ginzburg-Landau framework was used to
give a detailed picture of the (un)pinning process: their
calculation includes an estimate of the energy as a function
of displacement allowing for an estimate of the pinning
force. The next advance was the use of a local density
approximation [14] with Wigner-Seitz cells and Gogny
[15] and Argonne [16] interactions, which gives a similar
density-dependent pattern of (un)pinning as Ref. [13] but
smaller by almost an order of magnitude.
Unlike vortices in weakly coupled BCS superfluids,

vortices in dilute neutron matter (and the UFG) displace
a substantial amount of matter from their core [17].
Therefore, comparing ‘‘energies’’ of stationary configura-
tions with a nucleus on the core of a vortex and a nucleus
away from the vortex is confounded by a choice of en-
semble: should one fix the number of neutrons or the
chemical potential in a finite simulation volume?
Computing stationary configurations is also computa-

tionally expensive—especially given the high degree
of precision required to render meaningful energy
differences—and simulations to date have required a high
degree of symmetry. For example, recent self-consistent
calculations [18–20] using Hartree-Fock-Bogoliubov
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(HFB) functionals extract the pinning energy of a vortex on
a single nucleus using a cylindrical geometry. In particular,
the conclusion of Ref. [19] that the pinning force is repul-
sive (glitches would thereby require interstitial pinning)
was questioned by Ref. [21] but addressed in Ref. [20],
while a different set of calculations using the local density
approximation suggests that pinning is attractive over a
substantial region in the inner crust [18,22]. Moreover,
nearby vortices and the Casimir effect can significantly
polarize a nucleus—an effect absent in simple cylindrical
geometries—dramatically changing the nature of the nu-
clear pinning sites and disrupting the regularity of the
nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly accurate asymmetric stationary states in full 3D are
currently not feasible (these require a full diagonalization
of the single-particle Hamiltonian), but TDDFTalgorithms
can be applied to the unconstrained 3D problem (which
requires only applying the Hamiltonian), and scale well to
massively parallel supercomputers for both cold atoms and
nuclei, as has been demonstrated in Ref. [24]. We now
present a qualitatively new approach for calculating
vortex-pinning interactions, unencumbered by the afore-
mentioned issues, utilizing only real-time dynamics.

The idea, similar to the Stern-Gerlach experiment, is to
observe how a vortex moves when approached by a nu-
cleus. To zeroth order, the sign of the interaction is deter-
mined qualitatively by the direction of the motion (Fig. 1);
with a more careful inspection, one can extract the force-
separation relationship FðrÞ (Fig. 2).
We validate our procedure using a dynamical extended

Thomas-Fermi (ETF) model [25–28] equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic ‘‘dimers’’
mB ¼ 2m of fermionic pairs, with an equation of state

EðnÞ / ��5=3 characterized by the Bertsch parameter � �
0:37 tuned to consistently fit both quantum Monte Carlo
and experimental results [27]. Despite the computational
simplicity of the ETF model, it has been demonstrated to
quantitatively reproduce a range of low-energy dynamics
of both UFG experiments [26] and fermionic density
functional theory simulations [28]. The UFG should also
qualitatively model the dilute neutron superfluid in the
crust of neutron stars [5] due to the large neutron-neutron
scattering length ann � �18:9 fm [29]. Thus, by using a
physically motivated model of the nuclear pairing potential
[15], we anticipate that these ETF calculations will provide
a fairly good approximation of future fermionic TDDFT
simulations.
To gain some intuition for the vortex-nucleus interaction,

consider the phenomenological Hall-Vinen-Iordanskii
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ �3:5 MeV=½1þ expðr=fm� 7:5Þ� moving on a straight line from left to right

at a constant subsonic velocity v � 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x � �2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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(HVI) equation (see Ref. [30] for a discussion) for a
vortex in 2D:

M€~rv � ~fqp ¼ �s ~�� ð _~rv � ~vsÞ þ ~Fv: (1)

Here, ~rv is the position of the vortex, the force ~Fv is per
unit length along the vortex, �s is the number density of the
‘‘background’’ superfluid, ~� ¼ 2�@~z is the quantized vor-
tex circulation, and ~vs is the ‘‘background’’ superfluid
velocity. This equation should only be taken as an intuitive
guide since terms on the left-hand side are ill-defined. The
‘‘mass of the vortex’’M, for example, depends strongly on

the way it is measured [31], and the force ~fqp due to

excited phonons has significant memory effects.
For slowly accelerating vortices, the contribution from

the term proportional to €~rv is small. Furthermore, if the
vortex and pinning site move sufficiently slowly, phonons

are not excited ( ~fqp ¼ 0), and we can ignore the entire left-

hand side of Eq. (1) [32]. This leaves the well-established

Magnus relationship �s ~�� ð _~rv � ~vsÞ � � ~Fv relating the

force ~Fv applied to the vortex and its perpendicular veloc-

ity _~rv relative to the background superfluid velocity ~vs.
Thus, by observing the dynamical deflection of a vortex
from a nuclear pinning site, one can directly extract the
direction and approximate magnitude of the vortex-nucleus
force without requiring a subtle subtraction of energies.

In small systems, the Magnus relation can only be used
to estimate the magnitude of the force since the superfluid

density �s and velocity vs are not precisely defined, though
reasonable estimates can be obtained. With an external
pinning potential Vpinð ~rpin � ~xÞ, however, one can directly

and unambiguously calculate the force on the pinning site:

~F pin ¼ �
Z

d3x
Vpinð ~rpin � ~xÞ

~rpin
�ð ~xÞ: (2)

In the nuclear context where neutrons are present in the
both the pinning site (the nucleus) and the superfluid
medium, the force can be obtained in two ways: (1)
Eq. (2) can be directly applied to a Coulomb potential
(Vpin) that couples to the proton charge density (�)—this

will be the force that the vortex exerts on the nuclear
lattice—or (2) one can estimate the force using Newton’s

law ~Fpin ¼ mpin ~apin for a dynamic pinning site comprising

protons and entrained neutrons. The position of the
pinning site can be unambiguously defined as the center
of mass of the protons, and the effective mass mpin can be

estimated [33].
What remains is to prepare the initial conditions with a

vortex and nucleus interacting at various distances. The
traditional self-consistent approach requires diagonalizing
N � N matrices (N ¼ NxNyNz) which takesOðN3Þ opera-
tions. This is not feasible for realistic N � 106, as each
iteration would required a day of supercomputing wall
time. Instead, one can use adiabatic state preparation
[34,35] which takes OðN2 logNÞ operations. The idea is
to adiabatically evolve in real time a state of some solvable
system to a desired initial state in the system of interest. For
example, starting with a noninteracting (Bose) gas trapped
in a harmonic potential VHOðrÞ ¼ mB!

2r2=2, we can form
either the ground state �GS / expð�mB!r2=2Þ, or an
exact vortex ‘‘Landau level’’ �� / ðxþ iy� �Þ�
expð�mB!r2=2@Þ (stationary in a rotating frame) with
angular momentum lz ¼ N@=ð1þmB!�2=@Þ where � is
the displacement of the vortex node from the center of the
harmonic trap. From this exact noninteracting state, we
adiabatically evolve the system to an interacting state in the
desired trapping potential Vtrap by simultaneously switch-

ing on the interaction s� and interpolating the trapping
potentials Vt ¼ ð1� sÞVHO þ sVtrap where s ¼ sðt=TÞ is a
smooth C1 switching function that goes from 0 to 1 over a
characteristic time T chosen to be longer than any intrinsic
time scale in the system:

From �GS we can generate the ground state, and from
��¼0 we can generate a single vortex in the center of the
trap, both to high precision. The adiabatic state preparation
can be significantly accelerated by introducing a ‘‘quantum
friction’’ term to remove phonon noise [35]. With this
combined approach, one can efficiently produce almost
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FIG. 2 (color online). Here we demonstrate consistency in
dynamically extracting a vortex-pinning force. We use the
nuclear pairing potential [15] VpinðrÞ ¼ 0:75 MeV=½1þ
expðr=fm� 7:5Þ� at densities �� 0:045 fm�3 � 0:28�sat. The
triangular (blue) points come from the computationally expen-
sive ‘‘stationary’’ method, while the solid (green) curve comes
from using the ‘‘dynamic’’ real-time evolution analogous to that
shown on the left panel of Fig. 1. The dotted (red) curve shows
the Magnus estimate for the force (1) using a Thomas-Fermi
approximation for �s and estimating ~vs from the image vortex
[36]. The double curves come from the pinning site moving in
then out.
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any desired initial state with less than a day of super-
computing wall time.

To accurately measure the vortex-pinning interaction,
one can choose as a final potential VT ¼ Vtrap þ Vpin: an

axially symmetric trap of suitably flat bottom and a pinning
potential in the center. By generating a configuration with a
vortex orbiting in a circle at radius r, we can use Eq. (2) to
calculate the force exerted on the centrally located pinning
potential: axial symmetry ensures that this is precisely the
vortex-pinning force at separation r. We use this procedure
within the ETF model to accurately calculate the ‘‘sta-
tionary’’ (in a rotating frame) vortex-pinning interaction
shown in Fig. 2.

The present demonstration has been limited to quasi-2D
simulations. The procedure will work just as well in fully
3D simulations. New effects such as the bending of a
vortex line when approached by a pinning site can just as
easily be analyzed: the vortex line will either be repelled by
the pinning site—bowing out to avoid it—or will be sucked
in. We have considered here only moving the pinning site,
but one could also consider manipulating parts of the
vortex with pinning potentials, dragging the pinned vortex
along a trajectory instead. In simulations with realistic
nuclei, the vortex-nucleus interaction will also excite and
deform the nucleus, significantly affecting the vortex-
nucleus interaction. It is conceivable also that vortex lines
could break and attach to various nuclear defects like rods
or plates: the dynamics of such broken vortex lines may
also play a important part in explaining neutron star
glitches.

We close with a brief analysis of the time evolution.
The complex scalar field� obeys an evolution equation of
the form

i@ _� ¼
�
� @

2 ~r2

2mB

þ Veff½��
�
�; (4)

where Veff½�� is an effective interaction that depends non-
linearly on � and on the external trapping and pinning
potentials. Consider the quasi-two-dimensional problem
where coordinates may be expressed as complex numbers
z ¼ xþ iy: a singly wound vortex at location zv may be
described by the field�ðzÞ ¼ ðz� zvÞfðzÞ, where fðzÞ is a
smooth complex-valued function that we assume has no
roots in the immediate vicinity of the vortex. The evolution
equations may then be expressed as follows:

i@ _fþ @
2 ~r2

f

2mB

� Veff½��f ¼ i@ _zvf� @
2ð@xfþ i@yfÞ=mB

z� zv
:

(5)

The left side is smooth; hence, the pole on the right side
must cancel with a root in the numerator, giving us an
explicit expression for the vortex velocity

_z v ¼ ½ _~rv�x þ i½ _~rv�y ¼ @
�i@xfþ @yf

mBf

��������z¼zv

: (6)

This expression can be written as an exact ‘‘Magnus’’
relation

~�� ð _~rv � ~vÞ ¼ @
2 ~r�

2mB�

��������z¼zv

; (7)

where the local ‘‘superfluid velocity’’ ~v is

f ¼ ffiffiffiffi
�

p
ei�; ~v ¼ ~r�: (8)

The meaning of �s in the HVI equations is not clarified
since the magnitude of � cancels in Eq. (7). Unfortunately,
although ~v is precisely defined and corresponds to ~vs in
some situations, one cannot generally make the correspon-
dence ~vs � ~v. In particular, doing so yields results that
differ by as much as 50% in Fig. 2.
The quantities appearing in Eq. (1) are related to long-

range momentum transfers and boundary effects, and one
must thus be content with reasonable estimates for �s and
vs, for example, from the average behaviors of the relevant
quantities near but outside of the vortex core. As Fig. 2
demonstrates, however, the Magnus relation is suitable for
extracting the sign and magnitude of the interaction. This
also provides an explicit check that the force evaluated
using our procedure is what appears on the right side in
Eq. (1) governing the vortex dynamics.
Conclusion.—We have described how to use TDDFT to

efficiently and unambiguously calculate vortex-pinning
interactions from real-time dynamical simulations of su-
perfluid systems. We have demonstrated with an ETF
model of the UFG that this approach can be applied to
calculate the vortex-nucleus interaction using nuclear
TDDFTs to model the crust of neutron stars. While we
considered only quasi-2D systems here, the size of the
problem, the magnitude and accuracy of the force extrac-
tion, and the use of pure real-time dynamics ensure that full
3D simulations of realistic fermionic TDDFTs are pos-
sible. With available resources [24], one can simulate
both finite and infinite nuclear systems in simulation boxes
of the order of 803 fm�3 for up to 10�19 s. A resolution to
the puzzle of pulsar glitches will require more than just
extracting the vortex-nucleus interaction, but with this real-
time method, this crucial step will soon be within reach.
These techniques can also be directly applied to systems

of trapped ultracold atoms in a variety of geometries, for
example, to explore vortex pinning on optical lattices. In
particular, the close approximation of the neutron super-
fluid by the UFG suggests that cold-atom experiments
might also be able to shed light on the glitching puzzle.
We thank S. Reddy and D. Thouless for useful discus-

sions. This material is based upon work supported by
the U.S. Department of Energy under Awards No. DE-
FG02-97ER41014 and No. DE-FG02-00ER41132.
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