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A general framework is proposed to tackle analytically local quantum quenches in integrable impurity
systems, combining a mapping onto a boundary problem with the form factor approach to boundary-
condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We
discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and
the distribution of the work done during the quantum quench. Our results display an interesting crossover
physics characterized by the energy scale T}, of the impurity corresponding to the Kondo temperature. We
discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable
impurity models and check our results using numerical methods.
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Introduction.—Quenches are a clear-cut way to study the
nonequilibrium physics of quantum systems and reveal
their intrinsic time scales. Here, energy is injected into
an otherwise closed system at time f = 0 via a sudden
change of a control parameter, and it is subsequently left
to evolve unitarily. From a theoretical perspective this is
convenient because energy exchange between the system
and its environment is not considered during its evolution.
Furthermore, such quench scenarios can be realized by
experiments probing the transient dynamics of physical
systems, such as atoms in a tunable trap potential or
quantum dots connected to tunable control gates.

In many cases, the effect of interactions is to give rise to
crossovers between two different kinds of physical behav-
ior. In the Kondo problem for instance, the crossover takes
place between a weakly coupled two-level system (the
spin 1/2 impurity) at high energy and a strongly coupled
screened impurity at low energy, and is characterized by
the Kondo temperature Tk [1]. This crossover has been
widely studied in equilibrium [1]. It has also been consid-
ered in nonequilibrium situations, both experimentally
[2,3] and numerically [4,5].

Many theoretical methods have been developed to attack
quantum impurity problems analytically [6,7], and it is
reasonable to expect that progress can be made in the study
of quench dynamics as well. Note however that the most
potent method—the use of conformal invariance [8]—does
not apply in the case of crossovers, since these precisely
describe the departure from scale invariance. This means
that in quantum impurity problems, only the very long-
time, low-energy behavior can be described by methods
such as those in [8,9].

Of all the quantities one may want to study in
quenches, the most fundamental is probably the overlap
of the states before and after the quench [10]. In equi-
librium, this is deeply related to the Anderson
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orthogonality catastrophe [11]. The type of situation we
have in mind here is rather the work distribution in a
situation where an impurity is suddenly coupled to an
electron bath, the coupling being characterized by a
crossover temperature 7, in equilibrium. We expect
that the work distribution should be a function of
W/T,, barring some scaling violations such as those
observed in the screening cloud problem [12].

We discuss here the main ideas of our approach and
illustrate them in the case of the resonant level model
(RLM). The Kondo model can be discussed similarly, at
the price of some extra technical difficulties that will be
presented elsewhere. We immediately warn the reader
that although the RLM is known as a ‘‘noninteracting
model”, the quench is an extremely nontrivial operation
in the free electron basis, as it affects an infinity of
multiple particle states. The technical difficulties
involved in its study are entirely analogous to those
occurring in the Kondo case.

General quantum mechanics considerations show that
the Loschmidt echo and the work distribution function
can be expressed in terms of the scalar products of
eigenstates of the Hamiltonian before and after the
quench. The main point of our approach is that these
scalar products can all be determined analytically, in the
limit where all energy scales are much smaller than the
cutoff (bandwidth), by using an axiomatic formulation
very much like what is done in the form-factor approach
to correlations in integrable massive quantum field
theories. The corresponding theoretical tools were put
forward in earlier papers [13,14]. There are, however,
several major difficulties. First, an infinity of such
matrix elements has to be taken into account. Second,
the associated sums over eigenstates are strongly diver-
gent at low energies, via an infrared catastrophe inherent
to the fact that we are dealing with a massless bulk
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theory. As we shall see, these difficulties can be con-
trolled using renormalization tricks, and remarkably
accurate results from the low- to the high-energy regions
can be obtained.

Resonant level model.—The spinless RLM involves two
independent one-dimensional wires connected by tunnel-
ing through a quantum dot (the ““impurity’’). The RLM is
equivalent to the anisotropic Kondo system at the Toulouse
point, and to the problem of an impurity in a Luttinger
liquid with parameter g = 1/2, and therefore the approach
outlined below will apply to these systems as well. After
unfolding the wires, the Hamiltonian reads H(y) =
J dx3H (), with the Hamiltonian density

Hy) = —ivp Y dlo i, + a(x)%zlpl(o)d + He.

a=1,2

(M

Here, the label a denotes the two wires, 7y is a tunneling
amplitude (which we took, without loss of generality, to be
the same for both wires). The equilibrium physics of the
RLM is rather simple. It is convenient to define . =
1/V2(1 = ,), so that ¢ _ decouples from the impurity.
The scattering matrix of the remaining fermion ¢ .
on the impurity then reads S, (w) = (iw — T},)/(iw + T}).
The tunneling term is a relevant interaction, thus creating
an energy scale T), = y?/2, and the system flows under
renormalization from the y = 0 fixed point (independent
wires) to a strong coupling fixed point y = oo, where
the impurity is completely hybridized with the wires. At
low energy, the only remaining effect of the impurity is a
phase shift . (07)=¢%? ) (07) with ¢*® = S, (w = 0)
so 8 = /2.

Quantum quench.—The main goal of this Letter is to
understand analytically the quantum dynamics of this sys-
tem after suddenly turning on (or off) the tunneling . Let
Hy=H(y=0) be the Hamiltonian of the system for ¢ < 0,
and H, = H(y) the Hamiltonian for ¢ = 0 (see Fig. 1).
The framework presented here is quite general and can be
applied at finite temperature, but for simplicity, we will
only consider the case 7 = 0 and imagine that the system
is initially prepared in the ground state |W(0)) = |¢60)) of
H, for t < 0. The wave function of the system at time ¢ is
then |W(2)) = e~ 17| P(0)).
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FIG. 1 (color online).
model.
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Quantum quench in the resonant level

Work distribution and crossovers.—We are interested
in the work performed on the system during the quantum
quench. In order to determine the work done W, two energy
measurements are necessary, so that the work is not an
observable but is rather characterized by a distribution
function, P(W) = X, Ky lygPo(W — (E{" — Eg),
where :,bg"f and Eg'f are the eigenstates and energies of
the Hamiltonian H, before (resp. H; after) the quench. The
work distribution P(W) has gathered a lot of attention
recently [4,5,9,15,16] and is especially of interest since
it can be measured experimentally by spectroscopy [2—4]
(see also [17]). The generating function of the moments of
the work G(t) = [dWe "'P(W) is given [9,18] by the
Loschmidt echo G(t) = <¢§)O)|e[H0’e*iH1t|¢(()0)>, which is,
up to a phase, nothing but the overlap (¥(z)|W(0)). For
energies much smaller than the cutoff (bandwidth), the
Loschmidt echo and the work distribution take the univer-
sal forms G(¢)= g(¢T},), and P(W)=(1/T,)p(W — SE/T},),
where 6E = EEO) - EE)O ) is the minimal work that should be
performed on the system during the quench. They show
some interesting crossover dynamics at -~ 7!
(W — 8E ~ T,) (here, T}, is the equivalent of Tg). This
contrasts with the case of gapless quantum spin chains for
which the Loschmidt echo at low energy is a pure power
law with an exponent related to the central charge [19,20].
The time evolution after the quench follows the renormal-
ization group (RG) flow all the way from the UV
(t < T,', weak coupling) to the IR low-energy limit
(t > T, ', strong coupling). The computation of a quantity
such as G(r) thus requires all the nonperturbative physics in
order to observe the crossoverat t ~ T, ! Note that even in
a free-fermion problem such as the RLM, the computation
of G(¢) is highly nontrivial because it is nonlocal in terms
of the fermions.

Mapping onto a boundary problem.—In order to com-
pute the Loschmidt echo G(¢), we first map the quantum
impurity system onto an equivalent boundary problem.
This can be done in general, and the Loschmidt echo
G(1) can then be interpreted as the partition function of a
two-dimensional statistical problem, critical in the bulk,
with nonconformally invariant boundary conditions. In our
example of the RLM, after folding the i, -fermions sys-
tem and decomposing i , into Majorana (real) compo-
nents, one finds that the RLM is equivalent to two
independent copies of the critical Ising model, with a
boundary magnetic field h, = y/ V2. This is consistent
with the fact that the scattering matrix S, (w) has the
form of the reflection matrix in the Ising field theory
[21]. The Loschmidt echo after a Wick rotation then reads
G(t = —ir) =[Z,,(1)]*, where Z, () is the partition
function of the critical Ising model in the half-plane, with
finite boundary magnetic field #, for imaginary times
between O and 7, and free boundary conditions (BC) else-
where (see Fig. 2). Therefore, the Loschmidt echo
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FIG. 2 (color online). The Loschmidt echo in the resonant
level model can be thought of as a partition in the Ising model
with alternating vanishing and finite boundary magnetic fields
h;,. The quantum quench then effectively creates an arbitrary
number of fermionic excitations in the system. 7 is the imaginary
time.

following a quench in an integrable impurity problem
reduces to the computation of a partition function in an
integrable classical system with alternating zero and finite
boundary magnetic fields. Note also that Z, (7) is normal-
ized so that Z,, (1 = 0) = Z;, (1) = 1.

Low energy limit.—The computation of Z, (7) is non-
trivial because the nonzero boundary magnetic field creates
an energy scale T, = h7, and thus the problem cannot be
solved using boundary conformal field theory techniques.
However, in the low-energy limit 7h? > 1, the BC
becomes conformally invariant and Z,, (7) coincides with
the two-point function of the boundary conditions chang-
ing (BCC) operator from free to fixed BC in the Ising
model. The scaling dimension of the latter is known to
be h = 1/16, so that Z,, (1)~ (h,7)” /% in that limit. Going
back to the Loschmidt echo, this means that G(z) ~ (/4
when T}, >> 1, where the exponent can also be interpreted
in terms of the phase shift of the ¢, fermions
2h = 1/2(8/m)? = 1/8. The vanishing of G(¢) can there-
fore be traced back to the well-known Anderson orthogo-
nality catastrophe. In terms of the work distribution, we
thus obtain an edge singularity at low energy [5,9],

1 W — 6E\a-1
I e A

with @ = (8/7)? = 1/4 in the RLM. This conclusion
holds also for quenches in interacting impurity
models, and one finds for example o = g/2 for the aniso-
tropic Kondo case (g =1 being the isotropic model,
and g = 1/2 the Toulouse point) and « = 1/8 for an

impurity in a Luttinger liquid, regardless of the Luttinger
parameter.

Form factor approach.—Although boundary confor-
mal field theory techniques can be used to analyze the
low-energy limit of the quantum quench, the full nonper-
turbative computation of G(¢) is much more involved.
When 1, is finite, one can still think of Z, (7) as the
two-point function of some generalization of BCC opera-
tors to nonconformal field theory. For integrable systems
such as the ones we are considering, it should come as no
surprise that the matrix elements of these operators can be
handled [13,14] using axiomatic techniques very similar to
those used in the form factor (FF) approach to bulk corre-
lations [22]. In particular, we find that the quench of the
boundary magnetic fields creates an arbitrary number of
fermions in the Ising field theory (see Fig. 2), so that one
obtains the formal expansion

0 n . — 7 eBi
Z0-3 [T L (=)

1, (B, - -, Bul Dol

3)

where 3; is the rapidity of the i th fermionic excitation of
energy efi. h,(By, ..., B, Q) is the overlap between the
groundstate of the Ising model |Q)), with free boundary
conditions, and the eigenstates |By,..., B, of the
model in the presence of a finite boundary magnetic field
hy. This inner product can be thought of as a FF of BCC
operator in the boundary Ising model, which is known
exactly from the axiomatic approach [13,14]. (For other
works using integrability ideas in the context of quenches,
see [23-25].)

Now, expression (3) involves an infinite sum of terms.
Since the problem is massless in the bulk, n particle terms
do not necessarily give rise to smaller contributions, as
their energy can be arbitrarily low. The convergence of the
expansion (3), or even its numerical usefulness, are thus
not obvious a priori. Moreover, the integrals involved in
this expansion are in fact IR divergent. It turns out, never-
theless, that the sum can be regularized by reorganizing the
terms in the expansion. Details will be given elsewhere. We
only quote the leading-order final result,

InZ), (7) = [( © A )W)

y 27U
1 fo du;y [~ du,
+— —= +
2!_/;) 27Tu1[0 27Tuzgx(u1 ua)
- 2
x ((u) - l)qf(ul)\lf(uz) N
ug + Uy

where x = 7T, (recall 7 is the imaginary time) is an
effective coupling parameter, dimensionless as expected,
g,.(u) = e — 1, and the Kernel ¥(u) reads
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with ¥(0) = 1 and W(u) ~ u~! as u — . As a nontrivial
check, this expansion can be resummed exactly in the IR
limit x > 1, which yields Z;, (1) ~ x~ /% as expected from
CFT. Moreover, for any value of x, Z;, (7) can be estimated
by keeping only a few terms in the FF expansion.
Typically, the two- and three-particle contributions are
sufficient to obtain a very good approximation all over
the crossover region. Finally, we note that although we
have used imaginary time to allow for a statistical mechan-
ics interpretation of the results, everything works as well in
real time, with 7 = it.

Lattice model.—In order to validate the FF approach, we
compare our analytical results to numerics in the RLM case
(1). We consider the itinerant fermion model (equivalent to
a XX spin-1/2 chain) with two weak links,

H= _JZ(CL]CI- +Hc)— (' —J)(cgc_l + C}LCO +H.c.),
7

with J = 1 so that the Fermi velocity is vy = 2. At suffi-
ciently low energies J' << J = 1, the system is described
by the effective Hamiltonian (1), with y o J'. Given the
free fermionic nature of the problem, it is even possible to
identify exactly the energy scale T, ~2J'?/J [26]. The
Loschmidt echo G(¢) following a quench from J' = 0 to
J' # 0 can be expressed as a determinant that we evaluate
numerically—see [20] for similar calculations. We com-
pute G(t) on L = 1025 sites for different values of J' and
find that the results indeed collapse onto a universal curve
after rescaling the time scale by a factor 7,

0.5

0.45

0.2 -
——J'=0.08
0.15 b J'=0.12
o1h ° J'=0.16
—J'=0.20
0.05} Im G(r) = = = Form Factors
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FIG. 3 (color online).

The universal curve of the Loschmidt echo computed
from numerics and from an extrapolated (see Supplemental
Material [27]) two-particle FF expansion are shown in
Fig. 3(a). Note that because of finite size effects, one
expects the curves for small values of J' to describe well
the universal curve for small x only. We find that the FF
expansion is in very good agreement with our numerical
results, even in the interesting nonperturbative region ¢ ~
T, 1 where G(¢) has a nontrivial behavior; note that there is
no free parameter in the results, which must match without
possible rescaling of the time axis. The resulting universal
work distribution is shown in Fig. 3(b). As expected, we
observe an edge singularity (2) at low energy. Note that this
power-law singularity would be smeared at finite tempera-
ture. For W ~ 6F + T, the work distribution has a bump
which we interpret as a signature of a Kondo resonance.
We emphasize that although some aspects of our work are
well known in equilibrium (Anderson orthogonality catas-
trophe, crossover temperature T},), it is truly remarkable to
observe this ““Kondo physics” in the real-time dynamics of
the system.

Discussion.—The new nonequilibrium dynamics
approach presented here is based on a generalization of
the form-factor approach. The calculated time evolution of
the Loschmidt echo was found to be in beautiful agreement
with independent numerical studies of an equivalent lattice
model. Applying the same formalism to the Kondo case
is a bit more involved, since the form factors are more
complicated in this case. However, the problem is not
fundamentally different from the case of the RLM, the
physics of the quenches being essentially interacting in
that case as well.

Crossovers in quench dynamics are just beginning to be
studied experimentally, especially in the context of

(@my-1 (b)
w

T, P(W)

10 10 1072 107" 10 10
(W- 5E)/Tb

(a) Loschmidt echo as a function of x = tT},, comparison between numerical results and form factors. Note

that we rescaled the Loschmidt echo |G(#)|? in the main figure by a factor x'/? in order to cancel the asymptotic power-law behavior for
x = tT, > 1. (b) Universal work distribution from FF. At low energy, the work distribution has an edge singularity with an exponent
a = (8/m)* = 1/4 given by the dimension of a BCC operator while for W — SE ~ T, the system shows an interesting crossover

physics.
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quantum impurity problems. Recently, in Ref. [3], a Kondo
crossover scale in the absorption energy of a quenched
quantum dot system was reported, reminiscent of our
results in the time domain [Fig. 3(b)]. One could well
imagine analogous experiments in the context of cold
atom systems, whereby a local quench is applied to the
trapping potential, and the subsequent time evolution of
the zero-momentum occupation number is monitored for
associated crossover effects.
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