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Experimental Implementation of Assisted Quantum Adiabatic Passage in a Single Spin
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Quantum adiabatic passages can be greatly accelerated by a suitable control field, called a counter-
diabatic field, which varies during the scan through resonance. Here, we implement this technique on the
electron spin of a single nitrogen-vacancy center in diamond. We demonstrate two versions of this scheme.
The first follows closely the procedure originally proposed by Demirplak and Rice [J. Phys. Chem. A 107,
9937 (2003)]. In the second scheme, we use a control field whose amplitude is constant but whose phase
varies with time. This version, which we call the rapid-scan approach, allows an even faster passage through
resonance and therefore makes it applicable also for systems with shorter decoherence times.
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Introduction.—Controlling quantum systems with high
fidelity is an essential prerequisite in various fields, such as
coherent control of atomic and molecular systems [1] and
quantum information processing [2,3]. The strategies that
have been developed for this purpose include the adiabatic
passage technique, which leads the quantum system along
a specific pathway in such a way that the system always
remains in its ground state. One of the attractive properties
of this technique is that the resulting evolution is robust
with respect to some experimental imperfections [4]. The
adiabatic passage also is the central part of the adiabatic
model of quantum computation [5,6], which has been
shown to be equivalent to the more common network
model. In all these cases, it is essential that the scan
duration of the adiabatic passage is short and the fidelity
as high as possible.

The quantum adiabatic theorem guarantees that the
system remains approximately in its ground state if the
evolution is sufficiently slow [7-9]. However, for all practical
applications, the optimal implementation is reached when
the scan time remains short, e.g., compared to the decoher-
ence time. A variety of techniques have been developed,
such as exploiting nonlinear level-crossing models [10] and
amplitude-modulated and composite pulses [11,12].

In a recent development [13—15], it was shown that the
system can remain exactly in its ground state, without
undergoing transitions, if an additional control field, the
so-called the counter-diabatic (CD) field is introduced.
This strategy was recently implemented in an atomic
Bose-Einstein condensate [16].

In multilevel systems, stimulated Raman transitions can be
driven in such a way that populations are transferred adiabati-
cally between two states [17,18]. Adiabatic transfers have
also been extended to nonlinear systems, where the theoreti-
cal analysis becomes significantly more complicated [19,20].
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In this Letter, we report another experimental implemen-
tation of the assisted adiabatic passage (AAP), using a
single nitrogen-vacancy (NV) center in diamond [21-23].
The NV centers are point defects, each of which consists
of a substitutional nitrogen adjacent to a vacancy. The NV
centers can exhibit attractive quantum properties even at
room temperature [24-26]. The potential applications of
the NV centers include quantum metrology [27-30] and
quantum computing [31-34]. Various techniques for
implementing high-fidelity coherent control of the NV
centers have been developed recently [26,29,35,36]. In
our experiment, we implement the AAP on an electron
spin transition of the NV center, using resonant microwave
fields as controls. In contrast to the previous implementa-
tion [16], where the coherent control was applied to an
ensemble of atoms, our experiment is implemented on a
single spin, with a potential advantage in encoding quan-
tum information into qubits in building quantum com-
puters. The fidelity of the passage is sufficiently high that
we can perform multiple rounds of the passage in opposite
directions. The results show good agreement between
theory and experiment.

Model.—In close analogy to the Landau-Zener model
[37-39], we describe the AAP with the Hamiltonian

HLZ(I) = /\(l)]z + AIX, (1)

where the I, are spin operators, and A(f) and A are
dimensionless fields applied along the z and x directions.
This Hamiltonian is a model for an arbitrary two level
system and plays a prominent role in various fields of
physics, such as in coherent control [16,40], quantum
criticality [41-43], and even in many-body systems [44].

The energy eigenvalues are ++/A%(f) + A?/2, and the
instantaneous ground state is
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(1)) = sin[6(2)/2]|0) — cos[6(r)/2]|1), 2)

where tané(t) = A/A, 8 € [0, 7], and |0) and |1) denote
the eigenstates of I, with eigenvalues *1/2, respectively.
The minimal gap between the two levels is A. Figure 1(a)
illustrates the energy levels for A = 0.2.

The original assisted adiabatic passage model [13,43]
starts from a scan from —oo to +00. For the experimental
implementation, we have to restrict ourselves to a finite
range, which we write as [— b, b]. If the control field is
scanned linearly in time from —b to b,

Alt) = b(t— 1), 3)

where ¢ € [0, 2]. The scheme can then be implemented for
any nonzero value of A by introducing a CD field that is
perpendicular to both the x and z components of the field:

Hep(t) = Vep(D1, “4)
where
Vep() = —(dA/dD)A/[A% + A(r)?], (%)

where the rate of change of A(¢) is dA/dt = b for the field
of Eq. (3). The total field for the AAP is thus a vector
B(1) = [A, Vep(#), A(r)]. Figure 1(b) shows the time
dependence of the three components for b = 2.

Experimental protocols and results.—For the experi-
mental test, we used the electron spin of a single NV
center in '>C enriched diamond. The reduced number of
13C nuclear spins results in long relaxation times, with
T5 > 100 us.

The hyperfine coupling between the electron and the 4N
nuclear spin is = 2.1 MHz; see the spectrum shown in
Fig. 1(a) in the Supplemental Material [45]. For the present
experiments, we use the subspace of this system that is
spanned by the states mg = 0, +1 of the electron spin,
m; = 0 of the nuclear spin. This subsystem can be excited
with excellent selectivity if the amplitude of the microwave
field remains well below the hyperfine coupling constant.
We therefore will not consider the nuclear spin state in
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FIG. 1 (color online). Characteristics of the single qubit model
for A = 0.2 and b = 2. (a) the energy levels and (b) the time
dependence of the three field components.

the following; see the spectrum shown in Fig. 1(b) in the
Supplemental Material [45].

For the AAP, the system should be initialized into the
ground state |g(0)) of Hy(0). In the experiment, we initi-
alize the system by a laser pulse into the state |0), whose
overlap with |g(0)) is sin[0#(0)/2]. In the experiment, we
use —3 = A(0)/A = —20, which results in overlaps of
[0.9871, 0.9997]. For our purpose, this is sufficiently close
to unity.

After initialization, the system evolves under the time-
dependent Hamiltonian

H(t) = Hyz(t) + Hcp(1) (6)
into the state

[y (1) = U(0)]g(0)), )

where U(t) represents the propagator generated by H(z).
During and after the scan, we read out the state of the
system by a second laser pulse, which again projects
the system onto the state |0). We write the probability of
finding the system in this state as Py, = [(Ol (1)
The detailed description of the system and the experiment
setup is given in the Supplemental Material [45].

In the actual experiment, the fields A, Vp, and A act on
the spin in a rotating reference frame. Writing

U, = e i€,
for the transformation from the laboratory frame to the

rotating frame, the Hamiltonians of the two frames are
related as
H™ = U,H*U! +iU,U],
H® = ytg™v, - ivlu,. ®

The laboratory-frame Hamiltonian thus has the field
components

(1) = A cosé(t) + Vep(r) siné(z)
w, (1) = —Asiné(t) + Vp(7) cosé(r)
w, = A1) — [dé(r)/dt].

This Hamiltonian must match the experimentally available
Hamiltonian, whose general form is

H®P = _a)olz + 2w1(t)1x

Accordingly, we must have
t
(1) = wpt +f Al)Hdr,
0

which defines our rotating frame transformation. For the
transverse field components, we invoke the rotating field
approximation, which allows us to set

w (1) = A cosé(t) + Vep(r) siné(r)
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and ignore the y component. The amplitude of the field is

therefore
lw ()] = VAZ + Vep (1)

Experimental limitations define a maximum possible field
amplitude, which we designate as (). In the present experi-
ment, it is determined by the requirement that no transi-
tions of other nuclear spin states are excited, and we found
a value of ) = 277 X 0.2 MHz to be a suitable compro-
mise. The maximum field amplitude is reached at

Q = A2 + [12/A2/s,, )

where we have defined the scale factor s,, which converts
the dimensionless quantities A and b into actual field
amplitudes (in Hz) and defines the scan duration

T, =25, (10)

Figure 2 shows the experimental results of the AAP
for the scan rates b = 0.6, 1, 1.6, 2, 3, and 4. For these
parameters, we can approximate s, = b/(QA). For
b = 0.6, the scan duration becomes 4.77 us and for
b = 4itis 31.83 wus. The z component is always scanned
from —40 to +40 kHz (in frequency units), while the y
component (the CD field) reaches a maximal amplitude
of 200 kHz at the anticrossing point. The x component of
the field in the rotating frame is 13.3 kHz for b = 0.6 and
2.0 kHz for b = 4. Filled circles show the experimentally
measured probabilities of the state |0). The error bars
(1 standard deviation) were determined by repeating each
experiment 10 times. The solid lines, which agree very
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FIG. 2 (color online). Experimental results obtained with the
analog implementation of the AAP. The individual experiments
correspond to b = 0.6, 1, 1.6, 2, 3, and 4. The experimental data
are shown as filled circles, and the corresponding error bars were
obtained by repeating the experiment 10 times. The curves show
the theoretical result for an ideal scan. The empty circles with the
almost horizontal line show the result for a reference experiment
without a CD field. The 2D representation is shown in the
Supplemental Material [45].

well with the experimental data points, represent the theo-
retical behavior. For comparison, we also show one data set
that was obtained without a CD field, for a scan rate of
b = 2. These data points are represented by the empty
circles and the corresponding theoretical curve can be
approximated as a horizontal line going through the ex-
perimental points. Clearly, a passage without a CD field
results in an almost completely diabatic transfer.

Heisenberg’s uncertainty relation limits the speed of
every (adiabatic or not) state-to-state transfer for a given
field strength. It is thus possible to increase the speed by
using higher field strengths. On the other hand, the maxi-
mum field strength is limited by the properties of the
system as well as by experimental limitations. Within these
experimental limitations, we now look for a scheme that
remains close to the original proposal, but minimizes the
overall duration of the scan without exceeding a field
strength that is dictated by the experimental conditions.
In the following, we will refer to this approach as the
rapid scan.

We determine the required control fields by dividing
the overall evolution U(¢) into N segments [46,47], each
of duration &, with the total duration of the sequence
N& = 2. The evolution within each segment is U,, =
Texp[—i[’(’}f_l)ﬁ H(t)dt] = exp[—i6H(m5)], where T
denotes the Dyson time ordering operator. Each segment
U, was implemented as a rectangular pulse with
Hamiltonian H,, = H(md)/s,,, whose field amplitude
had the constant value (). s,, is the scaling factor for the
segment. The duration of the segment can therefore be
reduced by this factor, compared to 8, to 7, = s,,0.
Clearly, the reduction of the duration is only limited by
the available field strength.

Using the transformation Eq. (8), we can calculate the
required laboratory-frame Hamiltonian

H2 = —wyI, + 201, cos(w,,t + ¢,,)

and the where t €&

D

required  duration T,
nT /-]. The scaling factor

Sy = Tm/8 = \[Az + V& (md)/Q (11)

is now different for every segment. The angular frequency
w,, and the phase ¢,, become

W, = wy+ [Am8)/s,,], tang,, = —Vcp(md)/A.

In the Supplemental Material [45], we show the explicit
values of these parameters for each step.

Figure 3 shows the experimental results. Here, we used
the same nominal scan rates b as in the analog case, but
split the scan into N = 56 segments. The experimental
data points are represented by filled circles, the error bars
were obtained by repeating the experiments eight times.
Clearly, the experimental data agree very well with the
theoretical expectation shown as the red curves. The empty
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FIG. 3 (color online). Experimental results obtained with the
rapid-scan approach. For details see the caption of Fig. 2. The 2D
representation is shown in the Supplemental Material [45].

circles again represent the reference experiment obtained
by setting Vcp = 0.

Given the high fidelity obtained in a single passage
through resonance, we can cycle the system back and forth
multiple times. The reverse passage is obtained by chang-
ing b to —b, which changes the direction of the scan as
well as the sign of the CD field. The results obtained in the
analog and rapid-scan approaches are shown as the left and
right columns in Fig. 4. Figures 4(a) and 4(c) show the
three field components in the rotating frame, and Figs. 4(b)
and 4(d) represent the experimental results for these re-
petitive scans, as well as the theoretical curves correspond-
ing to the ideal case. We find very little loss of population
after five passages through resonance.

Discussion.—The experimental implementation of the
time-dependent Hamiltonian H(f) always occurs with
finite precision, which results in a loss of fidelity.
Experimental contributions to this loss include the preci-
sion with which the shaped pulses are implemented—both
in terms of the amplitude and in terms of the time
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FIG. 4 (color online). Multiple assisted adiabatic passages.
The results obtained in the analog and rapid-scan approaches
are shown in the left and right columns, respectively. (a) and (c)
show the three components of the applied fields, while (b)
and (d) show the experimental data, together with the theoretical
curves for the ideal case (zero loss).

resolution. In the rapid-scan approach, the number of seg-
ments used is an important parameter. We used numerical
simulations of the experiment to estimate these losses. The
results indicate that for the analog scan, finite time resolu-
tion of 0.25 ns reduces the fidelity by a fraction of the order
of 1073, In the rapid-scan approach, for N = 56 segments,
the maximal loss during the AAP occurs near the critical
point at A = 0. For the lowest scan rate, with b = 0.6, this
loss is of the order of <1073, for the faster scan rate,
b = 4.0, it rises to 2.8 X 10~2. However, these are mostly
intermediate losses, which are recovered during the second
part of the scan: The calculated loss of fidelity at the end
of the evolution period is <1074.

For the parameters chosen here, the duration of a single
scan varies between 4.77 and 31.83 us in the analog
version and from 2.0 to 2.5 us in the rapid-scan imple-
mentations. They are thus all short compared to the coher-
ence time of our sample (7, = 500 ws).

To estimate the speed-up provided by the CD field, we
used numerical simulations of an unassisted scan, with the
same parameters as the experimental scan in Fig. 2, but
slower scan rates. To reach a fidelity of 0.99, the scan
duration had to be extended to 2.33 ms. This implies that
the assisted scan allows a speed-up of more than 2 orders
of magnitude (~ 150) if a linear frequency scan is used and
of about 3 orders of magnitude (~ 960) in the rapid pas-
sage (constant amplitude) version.

The analog and the rapid-scan approaches implement
both the same propagator, but they use a different scaling
of the time axis. This allows one to scan very rapidly when
the quantization axis does not change appreciably with the
offset. Most of the speed advantage of the rapid-scan
approach is therefore gained in the region of large detun-
ings (see Fig. 3 in the Supplemental Material [45]). Both
experiments relied on a segmentation of the actual fields
for implementation in an arbitrary waveform generator.
The precision with which the scans can be implemented
depend therefore on the amplitude and time resolution of
the instrument. In our setup, the minimal possible time
resolution is 0.25 ns, which is significantly shorter than the
time step used here (> 6.4 ns). According to numerical
simulations, using the full time resolution would reduce
the loss of fidelity due to the segmentation to <10~7. The
rapid-scan approach presented here is a first attempt at
reducing the duration of an AAP scan. We are confident
that further improvements are possible, e.g., by using the
tools of optimal control theory.

Conclusion.—We have implemented the assisted adia-
batic passages through analog and rapid-scan approaches
in a two level quantum system by controlling a single spin
in a NV center in diamond. This approach allows a signifi-
cant increase in the scan rate compared to the unassisted
passage and therefore reduces the requirements on the
decoherence time of the system to which it is applied.
Like in the unassisted case, the scan has to be slower if
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the minimum gap is small. If the scan is performed linearly
in time, the total duration also increases with the scan
range. However, with the rapid-scan approach that we
introduced here, the scan range can be increased arbitrarily
with very little time penalty. Our experiment results illus-
trate the excellent coherent control that can be achieved
for the spins of NV centers. These results should be helpful
for all applications requiring quantum adiabatic passages,
such as implementing geometric gates for quantum com-
putation [48], adiabatic control in interacting two level
systems [49], or adiabatic quantum computing [6].

This work is supported by the Heinrich Hertz
Foundation, and the DFG through grant Su 192/27-1.
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