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In the framework of the Cartan classification of Hamiltonians, a kind of topological classification of
Fermi surfaces is established in terms of topological charges. The topological charge of a Fermi surface
depends on its codimension and the class to which its Hamiltonian belongs. It is revealed that six types of
topological charges exist, and they form two groups with respect to the chiral symmetry, with each group
consisting of one original charge and two descendants. It is these nontrivial topological charges which
lead to the robust topological protection of the corresponding Fermi surfaces against perturbations that

preserve discrete symmetries.
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For a Fermi gas at zero temperature, a Fermi surface
(FS) naturally arises as the boundary separating the occu-
pied and empty states in (w, K) space. As is known, when
weak interactions or perturbations and disorders are intro-
duced, some FSs still survive though the occupation of
states may be shifted dramatically, while some others are
easily gapped. Such a kind of FS stability originates from
its topological property of the Green’s function or the
Feynman propagator for fermionic particles, G(w, k) =
(iw — FH)~', which was first pointed out by Volovik in
Ref. [1]. Generally speaking, an FS is robust against weak
interactions or perturbations and disorders, if it has a non-
trivial topological charge that provides the protection; other-
wise, itis vulnerable and easy to be gapped. The most general
case is that a Hamiltonian is not subject to any symmetry,
where the topological charge is formulated by the homotopy
group 7rp[GL(N, C)]. This general case was addressed in
Refs. [1,2] and analyzed in the framework of the K theory [3].
Notably, real physical systems have normally certain sym-
metries, making it necessary and significant to develop a
corresponding theory for symmetry-preserving cases.

It is known that the symmetry of a quantum system can
always have either a unitary representation or an antiuni-
tary one in the corresponding Hilbert space. The unitary
symmetries, such as rotation, translation, and parity
symmetries, are easy to be broken by weak interactions
or perturbations and disorders, while the antiunitary
symmetries, such as the time-reversal symmetry (TRS)
and charge conjugate or particle-hole symmetry (PHS),
can usually be preserved. Thus we are motivated to develop
a unified theory to classify the FSs of systems with the two
so-called reality symmetries, namely, TRS and PHS, which
seems to be fundamentally important. In this Letter, by
taking into account the two reality symmetries and intro-
ducing six types of topological charges, a new kind of
complete classification of all FSs is obtained, explicitly
illustrated in Table II. Moreover, an intrinsic relationship
between the symmetry class index and the codimension
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number is established, which provides us a unique way
for realizing any type of FS with a high codimension.

Let us first introduce how to classify all sets of
Hamiltonian involving the above-mentioned two reality
symmetries, as done in the random matrix theory [4,5].
It turns out that the chiral symmetry (CS) has to be intro-
duced for a complete set of classification. If a unitary
symmetry represented by K can anticommute with the
Hamiltonian H , i.e., {XK, HH{} = 0, it corresponds to the
CS. In fact, the combined symmetry of TRS and PHS is a
kind of chiral symmetry. On the other hand, two chiral
symmetries can be combined to commute with J{, which
makes JH diagonal. Thus it is sufficient to consider only
one chiral symmetry. Based on these considerations [6—8],
a kind of complete classification of all sets of Hamiltonian
can be obtained with respect to the three symmetries. As is
known, the TRS and PHS are both antiunitary and can be
expressed in a unified form:

HEk)=e.CHT(-k)C™!, cct=1, C"=qy.C, (1)

where €, = +1(—1) denotes TRS (PHS) and 1, = *1. As
a result, each reality symmetry may take three possible
types (even, odd, and absent), and thus there are nine
classes. In addition, considering that the chiral symmetry
may be preserved or not when both reality symmetries are
absent, we can have ten classes, as summarized in Table I,
which is the famous Cartan classification of Hamiltonians
in the random matrix theory [4,5], which may be easily
understood in the present framework [6-9].

For a system with spatial dimension d, the FS is a
compact submanifold with dimension d — p if the (w, k)
space is compact. We may define the codimension of the
FS as p. Topological charges can be defined on a chosen
p-dimensional submanifold in the (w, k) space enclosing
the FS in its transverse dimension. The two reality sym-
metries are essentially different from the CS, which lies
in that each of the reality symmetries relates a k point
to the —k point in k space, while the CS acts on every k.
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TABLE 1. Classification of Hamiltonian. T and C denote,
respectively, TRS and PHS, with O indicating the absence of
TRS (PHS) and =1 denoting the sign of TRS (PHS). S denotes
CS, with 0 and 1 representing the absence and presence of CS,
respectively.

Nonchiral case Chiral case
Al D AIl C Al BDI DII CII CI

+1 0 -1 0 0 +1 -1 -1 +1
0 +1 0 -1 0 +1 +1 -1 -1
0 0 0 0 1 1 1 1 1

[N e N]
cool|»

This difference leads to the requirement that a chosen
submanifold in (w, k) space has to be centrosymmetric
around the origin in order to preserve either of the reality
symmetries.

Generally, the topological property of an FS depends on
its codimension and symmetry [10]. After the detailed
analysis, we are able to classify all classes in an appropriate
form illustrated in Table II, which is one of main results of
this work. In each case, as seen in Table II, a kind of
topological charge is designated to the FS. Topological
charges 0, Z, Z(21,2)’ and 27 correspond, respectively, to
0, an integer, an integer of mod 2, and an even integer. As
illustrated in the table, the ten classes can be divided into
real and complex cases according to whether or not they
have either of the reality symmetries. On the other hand,
they can also be put into the chiral and nonchiral cases
depending on whether or not they have the CS. Actually,
from this kind of classification, we can find that there are

TABLE II. Classification of Fermi surfaces. p is the codimen-
sion of an FS, and i is the index of symmetry classes.

Nonchiral case Chiral case

Complex case

A AIII
p\i 1 2
1 zZ 0
2 0 z
Real case

Al D Al C BDI DII CI CI
i1 3 5 7 2 4 6 8
1 o z 7% 2 o z o 0
2 0 o z’ o 0 z 7V 2z
3 22z 0 7z 1¢ 0 o z o0
4 0 o o zV¥ 22 0 z ¥
5 ¥ 22z o 1z 0 0 o z
6 Z 0 0 0o z¥ 2z o Z
7 z 7V 2z o 7' o 0 0
8 o z o o z zP 222 o

six types of topological charges, which form two groups in
terms of the CS, with each group consisting of an original

one (Z) and the two descendants (Z(zl) and Z(ZZ)) [11]. In the
chiral or nonchiral real case, all of the four types of FSs can
be realized for any given number of codimension. It is also
clear that the complex and real cases have different perio-
dicities: One is of a twofold periodicity, while the other is
of an eightfold one. Obviously, for the complex case, we
can introduce a matrix element C(p, i) to denote the topo-
logical charges listed in Table II, where i = odd (even)
number corresponds to the class A (AIIl) and p is the
number of the codimension. In this way, C(p, i) satisfies
the relation C(p,i) = C(p + n,i + n) with n an integer
and i mod 2. For the real case, we can also introduce
another matrix element R(p, i), where i = 1, ..., 8 denote
the classes Al, BDI, D, DIII, All, CII, C, and CI, respec-
tively. Intriguingly, we can also find

R(p,i)=R(p +n,i+n) 2)

with i mod 8, which establishes an intrinsic relationship
between the symmetry class index and the codimension
number. More significantly, based on this relationship, we
are able to realize any type of FS with a high codimension
by reducing its codimension to an experimentally acces-
sible one with the same CS, i.e., p = 1, 2, 3. Actually, the
above relation and the twofold periodicity as well as the
eightfold one originated from the Bott periodicity of
GL(N, C). In particular, the present eightfold periodicity
is induced by the two reality symmetries enforcing on the
twofold Bott periodicity and, thus, is different from the
eightfold Bott periodicity for O(N) and Sp(N) [12].

Let us look at the most general case, i.e., the class A, in the
absence of any symmetry. The basic idea to classify FSs in
terms of the topology may be learned from this case, which
was already discussed in Ref. [3]. We here follow it for a
pedagogical purpose. The Green’s function can be written as

1

Glo. k) = 300"
which is regarded as an N-dimensional matrix. FSs are
defined to be connected to the zero energy. Formulating
topological charges in terms of the Green’s function has
an advantage when handling interacting systems, which is
addressed in Refs. [3,13,14]. Generally, the FS consists of
branches of compact manifolds in k space. For a specific
branch with dimension d — p, a p-dimensional sphere S”
can always be picked up from (w, k) space to enclose this
branch in its transverse dimension. G~ (w, k) is nonsingu-
lar for each (w, k) restricted on the S7; in other words, itis a
member of GL(N, C). Then G~ !(w, k) restricted on the S?
can be regarded as a mapping from S? to GL(N, C). As all
these mappings can be classified by the homotopy group
m,[GL(N, C)], G '(w, k) on the S? is in a certain homo-
topy class. In the so-called stable regime, N > p/2,
m,[GL(N, C)] satisfies the Bott periodicity[12]:

3)
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Z € odd,
=, [(GL(N, ©)] z{ Pee
0 p € even

Since physical systems are always in the stable regime, only
the mappings on S? for FSs with the odd codimension p =
2n + 1 canbe in a nontrivial homotopy class, while ones for
the even codimension p are always trivial. In other words,
FSs with the even codimension p are always trivial and
vulnerable against weak perturbations, while ones with odd
codimension can be classified by 7,[GL(N, C)] = Z, and
its stability is topologically protected against any weak
perturbations for the nontrivial one. We emphasize that,
since the class A is not subject to any symmetry, the pertur-
bation can be quite arbitrary. In addition, the concrete shape
of the S? is irrelevant in principle, and the only requirement
is that it is an orientable compact submanifold in (w, k)
space with dimension p, which is distinctly different from
the cases of reality symmetries. The homotopy number of
a mapping for an FS is named as the topological charge of
the FS, which can be calculated from the following formula:

N, = Cp/ tr(GdG1)? @)
sP
with

n!
C n + )i+

The Z type of FSs in class A is thus obtained. Once an
FS has nontrivially this topological charge, it can survive
under any weak perturbations in the absence of any sym-
metry [15]. But the topologically trivial FSs can be gapped
due to the perturbations. Both cases can be seen in *He [1],
where two Fermi points in *He-A phase are topologically
protected with charge *=2 individually, while the Fermi
line in the planar phase cannot be topologically charged
because its codimension is even. The FS of another simple
model Hamiltonian H{ = g(k) - o belongs also to this
topological class [16], where o; are Pauli matrices.

We now turn to consider the case when the system has a
chiral symmetry denoted by XK, i.e.,

{H, K} =0.

Systems with this symmetry have a crucial property: For
any eigenstate |a) of H with the energy E,, K|) is also an
eigenstate of H but with the energy —E . The Hamiltonian
associated with this symmetry can always be diagonalized
in k space on the basis that diagonalizes XK and thus can be

written as
- u(k)
hk) = <u+<k> )

On the S? that is chosen to enclose an FS of dimension
d — p, h(k) also takes this form, which makes the topologi-
cal charge defined in Eq. (4) always vanishing. However,
u(k) can be regarded as a mapping from S7 ! (set w = 0) to

GL(N/2, C), which may be in a nontrivial homotopy class
of 7, 1[GL(N/2), C]. In this sense, there exist nontrivial
FSs for the even number of codimension, i.e., p = 2n.
The homotopy number may be calculated as

v, = Cpy fs L r0du 0y

As the homotopic number is real, it can also be calculated by
u® (k). Thus the homotopic number can also be expressed
by the Green’s function:

Vp = C[;] fgn—, tr(K(GAG NP1 ). &)

The homotopic number is referred to as the chiral topologi-
cal charge of the FS.

For this Z-type topological charge in class AlIl, if it
is nontrivial, the FS is stable against any perturbations that
do not break the CS. However, the topological protection
is not as stable as that induced by Eq. (4), because the FS
is gapped if ever the CS is broken. For instance, the
honeycomb lattice model has two Dirac cones with the
low-energy effective Hamiltonian H , = k; oy * kyi o,
respectively, with o3 representing the chiral symmetry that
is the sublattice symmetry here [17]. The two Dirac cones
have v, = *£1, respectively, [16], and thus they are topo-
logically stable as far as this chiral symmetry is preserved.
More remarkably, according to our present theory, it is
noted that the stability of FSs in this model was recently
verified in an ultracold atom experiment [18]. In addition,
it was also seen clearly from this experiment that if the
sublattice symmetry is broken, a gap may be opened in
the whole Brillouin zone. It is noted that this type of
topological charge was also seen in a superconducting
system [19]. Another interesting model Hamiltonian
H = (k2 — k2)o| + 2k k o, also gives out this type of
topological charge v, = £2 [16].

When TRS and PHS are considered, many Z-type
topological charges vanish. As for the first descendant

(i.e., Z(zl)) of a Z type in a nonchiral real case, e.g., the
case of codimension 2 that is labeled one row above that of
codimension 3 (Z-type) in class All in Table II, the Green’s
function restricted on the chosen S? can be classified by a
Z,-type topological charge. The key idea is that G(w, k)|
can be continuously extended to G(w,k;u) on the
(p + 1)-dimensional disk by introducing an auxiliary pa-
rameter u (ranging from 0 to 1) with the two requirements:
(i) G(w, k;0)ls» = G(w, k)|g» and (ii) G(w, k; 1)|g is a
diagonal matrix, such that G,, = (iw — A)~! for empty
bands and Gﬁﬁ = (iw + A)~! for occupied bands, where
A is a positive constant [13,20]. The validity of the exten-
sion is based on the fact that G(w, k) restricted on S?
is always trivial in the homotopic sense in this case.
This topological charge in terms of Green’s function is
formulated as
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1
Ng,w:c;, f f dutr(GdG™1)?G9,G™") mod2 (6)
sr Jo

with
o - 2(p/2)!

P P2y

where “~"" has been dropped for brevity. The topological
charge is defined in a similar way to the Wess-Zumino-
Witten term in quantum field theory [21], and the Z,
character comes from the fact that two different extensions
differ to an even integer, as demonstrated in Ref. [13]. As
a concrete illustration, we here exemplify this Z,-type
topological charge by a model Hamiltonian defined
in two spatial dimensions: H (k) = k.o, + kyo,+
(ky + ky)or3, which has only a TRS with C = io, and n =
—1 according to Eq. (1) and thus belongs to class All in
Table I and corresponds to the case of R(2, 5) in Table IL
The corresponding FS at the origin in the (w, k) space is
found to have a nontrivial topological charge Nél) = 1 from
Eq. (6) [16].

For the second descendant with the codimension p (i.e.,
Z<22)), e.g., the case of codimension 3 with two rows above
that of codimension 5 in class C in Table II, a Z,-type
topological charge can also be defined on the chosen S?”.
To define the Z,-type topological charge, the G(w, K)|g» is
smoothly extended to a two-dimensional torus 72 parame-
terized by the two auxiliary parameters u and v (both
ranging from —1 to 1) with the three requirements:
(i) G(wk;0,0)|y=G(w,k)ls, (i) Glw, k;u v)lg =
€.CGT(w, —k; —u, —v)|5 C™', referring to Eq. (1), and
(iii) G(a), Kk; 1, 1)|g» corresponds to a trivial system, such
as Gu, = (iw — A)~! for empty bands and GBB =
(iw + A)~! for occupied bands. The corresponding topo-
logical charge is defined as [13,20]

N§72) = Cp+2[

SPXT?

tr(GAG™ )P mod 2, (7)
where ~ has been dropped and the C,., is defined in
Eq. (4). As a topological charge of FSs, its physical mean-
ing is analogous to that of Eq. (6).

Similar to the nonchiral case, a Z chiral topological
charge is associated with two descendants: a son and a
grandson. The Z, topological charge of the son originated
from the chiral topological charge defined in Eq. (5) in the
same spirit of that Eq. (6) originated from Eq. (4), which is
given by

C_ 1
V(,,l) =_pt f du
2 sr=1 Jo

X tr(K(GAG)P~1Ga, G ,—o) mod2,  (8)

where K is the matrix to represent the chiral symmetry,
SP~1 ig the chosen S? restricted on w =0, and G is
extended by an auxiliary parameter ranging from O to 1

with the same requirements for introducing Eq. (6). The Z,
topological charge for the grandson can also be defined in
the same spirit of writing out Eq. (7). We extend the
G(w,k)|g» to a two-dimensional torus T2 parameterized
by two auxiliary parameters # and v (both ranging from
—1 to 1) with the four requirements: The first three require-
ments are the same as those of the nonchiral counterpart in
Eq. (7), while the fourth one is that the chiral symmetry is
preserved on T2, which also permits that either of the
reality symmetries is applicable in the second requirement.
The Z, topological charge is written as

uﬁf)=@ f tr(K(GAG HPH!],_y) mod2,  (9)

2 Jseixre

where C,, . is defined in Eq. (4).

The physical meanings of topological charges for the
eight classes with TRS and/or PHS are elaborated as
follows. The FS(s) with a certain codimension is always
distributed centrosymmetrically, since either TRS or PHS
relates k to —k. Thus there exist two possibilities: (i) The
FS with codimension p resides at the origin in (w, k)
space; (ii) the FS(s) is centrosymmetric outside of the
origin. For the first case, we can choose an S” in (w, k)
space to enclose the FS and use the corresponding formula
to calculate the topological charge. If the topological
charge is nontrivial, the FS is stable against perturbations
provided the corresponding symmetries are preserved. For
the second case, the FS(s) is usually spherically distributed,
so two SPs can be chosen to sandwich the FS(s) in its
transverse dimension. The difference of the topological
charges calculated from the two SPs is the topological
charge of the FS(s). If it is nontrivial, the FS(s) is topo-
logically stable when the corresponding symmetries are
preserved.

Before concluding this Letter, we wish to emphasize that
the topological charges of FSs addressed here are closely
connected to topological insulators or superconductors
[22], and therefore this work may provide a new and
deep insight for studying them.

In conclusion, FSs in all of the ten symmetry classes
have been classified appropriately in terms of topological
charges. It has been revealed that when an FS is associated
with a nontrivial topological charge, this FS is topologi-
cally protected by the corresponding symmetry.
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