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We study the effect of spatial heterogeneity on the collective motion of self-propelled particles (SPPs).

The heterogeneity is modeled as a random distribution of either static or diffusive obstacles, which the

SPPs avoid while trying to align their movements. We find that such obstacles have a dramatic effect on

the collective dynamics of usual SPP models. In particular, we report about the existence of an optimal

(angular) noise amplitude that maximizes collective motion. We also show that while at low obstacle

densities the system exhibits long-range order, in strongly heterogeneous media collective motion is quasi-

long-range and exists only for noise values in between two critical values, with the system being

disordered at both large and low noise amplitudes. Since most real systems have spatial heterogeneities,

the finding of an optimal noise intensity has immediate practical and fundamental implications for the

design and evolution of collective motion strategies.
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Most examples of natural systems, if not all, where
collective motion occurs in the wild, take place in hetero-
geneous media. Examples can be found at all scales.
Microtubules driven by molecular motors form complex
patterns inside the cell where the space is filled by organ-
elles and vesicles [1]. Bacteria exhibit complex collective
behaviors, e.g., swarming, in heterogeneous environments
such as the soil or highly complex tissues such as in the
gastrointestinal tract [2]. At a larger scale, herds of mam-
mals migrate long distances traversing rivers, forests, etc.
[3]. Despite these evident facts, little is known at both
levels, experimental as well as theoretical, about the
impact that a heterogeneous medium may have on the
self-organized collective motion [4]. For instance, most
collective motion experiments have been performed on
homogeneous arenas [4], from microtubules moving on a
carpet of fixed molecular motors [5], bacteria swarming on
surfaces [6,7], to marching locusts [8], and including fab-
ricated self-propelled particle systems [9,10]. Not surpris-
ingly, most theoretical efforts have also focused on
homogeneous media [4,11], from the pioneering work of
Vicsek et al. [12] to the detailed study of symmetries and
large-scale patterns in self-propelled particle systems
[13–21], where the transition to collective motion is
reduced to the competition between a local aligning inter-
action and a noise.

Here, we show through a simple model that the presence
of even few heterogeneities, which can be either static or
diffusive, changes qualitatively the collective motion dy-
namics. In particular, we find that there is an optimal noise
amplitude that maximizes collective motion, while in a
homogeneous medium, such an optimal does not exist,
see Fig. 1. For weakly heterogeneous media (i.e., low
obstacle densities), we observe that the transition to

collective motion exhibits a unique critical point below
which, the system exhibits long-range order, as in homo-
geneous media. For strongly heterogeneous media (high
obstacle densities), we find, on the contrary, that there are
two critical points, with the system being disordered at
both, large and low noise amplitudes, and exhibiting only
quasi-long-range order in between these critical points.
The finding of an optimal noise that maximizes self-
organized collective motion may help to understand
and design migration and navigation strategies in either
static or fluctuating heterogeneous media, which in turn
may shed some light on the adaptation and evolution of
stochastic components in natural systems that exhibit
collective motion, for instance, concerning the bacterial
tumbling rate.
Model definition.—We consider a continuum time model

for Nb self-propelled particles (SPPs) moving in a two-
dimensional space, with periodic boundary conditions, of

FIG. 1 (color online). Optimal noise amplitude. Order parame-
ter r as a function of noise strength � and obstacle density �o.
Data corresponding to L ¼ 140, Do ¼ 0, and �b ¼ 1.
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linear size L. SPPs interact among themselves via a (local)
ferromagnetic velocity alignment as in [12]. Spatial het-
erogeneity is modeled by the presence of either fixed or
diffusive obstacles. The new element in the equation of
motion of the SPPs is given by the obstacle avoidance
interaction by which SPPs turn away from obstacles when-
ever they are at a distance equal or less than Ro from them.
The implementation of this rule is analogous to the arche-
typical (discrete) collision avoidance rule introduced in
[22]. In the over-damped limit, we express the equations
of motion of the ith particle as:

_x i ¼ v0Vð�iÞ (1)

_�i ¼ gðxiÞ
�

�b

nbðxiÞ
X

jxi�xjj<Rb

sinð�j � �iÞ
�

þ hðxiÞ þ ��iðtÞ; (2)

where the dot denotes temporal derivative, xi corresponds
to the position of the ith particle, and �i to its moving
direction. The function hðxiÞ represents the interaction
with obstacles and is defined as

hðxiÞ ¼
8<
:

�o

noðxiÞ
P

jxi�ykj<Ro

sinð�k;i � �iÞ if noðxiÞ> 0

0 if noðxiÞ ¼ 0
;

(3)

where yk is the position of the kth obstacle, the sum runs
over neighboring obstacles and the term �k;i denotes

the angle, in polar coordinates, of the vector xi � yk. In
Eq. (1), v0 is the active particle speed and Vð�Þ �
ðcosð�Þ; sinð�ÞÞT . The interaction SPP-SPP is defined by
two parameters, the angular (relaxation) speed �b and the
interaction radius Rb. Similarly, the interaction SPP-
obstacle is determined by �o and Ro. The term nbðxiÞ
[noðxiÞ] corresponds to the number of SPPs (obstacles)
that are located at a distance less or equal than Rb [Ro]
from xi. The additive white noise is characterized by an
amplitude � and obeys h�iðtÞi ¼ 0 and h�iðtÞ�jðt0Þi ¼
�i;j�ðt� t0Þ. The term gðxiÞ in Eq. (2) controls the strength
of the alignment with respect to obstacle avoidance. For
instance, gðxiÞ ¼ f1��½noðxiÞ�g with�½n� ¼ 1 if n > 0,
and 0 otherwise (switching rule), represents a scenario in
which SPPs stop aligning in the presence of an obstacle,
analogous to the hardcore repulsion rule introduced in [22].
We also consider a simpler scenario with gðxiÞ ¼ 1
(no switching rule) where particles never stop aligning to
neighbors. Finally, obstacles are either fixed in space, or
diffuse around with a diffusion coefficient Do. For
simplicity, we initially fix parameters as indicated in [23]
and use the switching rule. Other scenarios are discussed at
the end.

If �b ¼ �o ¼ 0, Eqs. (1) and (2) define a system of
noninteracting persistent random walkers. For �b > 0
and No ¼ 0, Eqs. (1) and (2) reduce to a continuum time

version of the Vicsek model (VM) [12] as proposed in [15].
It is for �b, �o > 0, and No � 0 that we observe a com-
pletely new behavior, since now the SPPs not only align
among themselves but also avoid obstacles by turning
away from them, with a characteristic turning time given
by 1=�o. Figure 2 illustrates several of the various macro-
scopic phases that are observed.
Optimal noise.—To characterize the macroscopic col-

lective motion, we use the following order parameter:

r ¼ hrðtÞit ¼
���������

1

Nb

XNb

i¼1

ei�iðtÞ
��������
�
t
; (4)

where h. . .it denotes temporal average. Figure 1 shows r vs
the angular noise � for various obstacle densities �o ¼
No=L

2. The curve �o ¼ 0 corresponds to the continuum
time VM and as the noise amplitude� is decreased below a
critical amplitude �c1, r monotonically increases, with
r ! 1 as � ! 0 [4]. Here, we find that for �o > 0 the
scenario is qualitatively different and r exhibits a non-
monotonic behavior with �. Moreover, we observe that
there is an optimal angular noise amplitude �M at which r
reaches a maximum value. This means that due to the
presence of a random distribution of obstacles, there exists
an angular noise �M that maximizes the collective motion.
Notice that in a simple model of particles driven in oppo-
site directions, the existence of an ‘‘optimal’’ noise has also
been reported, but in this case, contrary to what we report
here, it freezes particle motion [24]. Figure 1 shows that
the system is disordered, without exhibiting collective
motion for �> �c1. Collective motion and orientational
order increase as � is decreased from �c1 to �M.
Counterintuitively, decreasing � further hinders collective
motion. If the density of obstacles �o is large enough, we
find that, unambiguously, the system becomes fully disor-
dered again but this time for� � �M. The remarkable fact
indicates that there is a second, nonzero, critical angular
noise amplitude �c2 at large enough densities �o.
Order-disorder transitions.—At low densities �o, the

obtained numerical data suggests that for � � �c1 the

FIG. 2 (color online). Snapshots of the different phases exhib-
ited by the system with Do ¼ 0 and �o ¼ 2:55� 10�3: (left)
clustered phase, � ¼ 0:01 and r ¼ 0:58, (center) homogeneous
phase, � ¼ 0:3 and r ¼ 0:97, and (right) band phase, � ¼ 0:6
and r ¼ 0:73. Insets correspond to snapshots of the entire
system, where the red box inside them indicates the area that
is shown on main panel. For movies see [26].
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system exhibits long-range order (LRO). Increasing the
system size Nb, while keeping densities �b ¼ Nb=L

2 and
�o constant, we observe that the transition becomes
sharper with system size, Fig. 3(a). The transition at �c1

is accompanied by the emergence of traveling high density
structures, i.e., moving bands as observed in the VM [22].
Bands are observed only close to �c1, and at the optimal
angular noise �M, they have always disappeared. On the
other hand, as the density of obstacles �o is increased,
bands contain less particles, while the background density
of SPPs increases, to the point that for large values of �o

bands are no longer observed.
The existence of LRO implies that for a fixed � value, r

should tend to an asymptotic value larger than 0 as the
system size Nb goes to infinity. A useful way to estimate
this limit is to plot r as a function of the inverse system size
y, with y ¼ 1=Nb, and extrapolate the behavior of r when
y ! 0. This is shown in Fig. 3(c) for �o ¼ 2:55� 10�3,
where the solid curves correspond to fittings with expo-
nentials, i.e., r� r1ð�Þ exp½Að�ÞNb�. Such a scaling
strongly suggests the existence of LRO for �< �c1 at
low �o densities.

At higher densities, the system behavior is remarkably
different. Figure 3(b) shows that this time as the system
size Nb is increased, the transition becomes smoother, with
the order parameter r decreasing with system size for all �
value. We find that r obeys the following scaling with
system size Nb:

r / N��ð�;�oÞ
b ; (5)

with �ð�; �oÞ> 0, Fig. 3(d). Though this finding is some-
how reminiscent of an equilibrium Kosterlitz-Thouless
transition [25], there are various fundamental differences.

In first place, � exhibits a nonmonotonic behavior with �,
with a minimum at �M, and � ¼ 1=2 at low and high �
values, see inset in Fig. 5. Such a scaling corresponds to a
fully disordered phase and indicates that in addition to �c1,
there is a second critical point �c2 for low � values.
In analogy with the Kosterlitz-Thouless transition, we
defined �c2 as the angular noise at which � ¼ 1=16.
When 0< �< 1=16, we say that the system exhibits
quasi-long-range order (QLRO). We stress that � ! 1=2
for nonzero � values below �c2, while � reaches its mini-
mum value as � ! �M. In conclusion, the numerical data
for high obstacle densities �o is consistent with QLRO for
�c2 � � � �c1. This means that at some intermediate
density �	

o, which we roughly estimate around �	
o ¼

0:03, there is a transition from LRO to QLRO.
We have seen that, when �o > 0, the order parameter r

exhibits a maximum at �M. This means that we can find
values of � to the left and to the right of �M that lead to the
same value of the order parameter r. The next logical
question is whether we can say something regarding the
state of the system for two different � values that lead to
the same value of r. To the right of �M and close to �c1

particles organize into bands, Fig. 2 (right). To the left of
�M and close to �c2, on the other hand, particles form very
dense clusters, and freely moving particles are rarely
observed. When these dense clusters collide with an ob-
stacle, they often split into two or more fragments that are
deflected away, see Fig. 2 (left) and cluster phase movie in
[26]. The newly formed subclusters tend to move in uncor-
related directions. The dynamics is such that while a
cluster recruits particles and other clusters in between
collisions, it breaks into very cohesive subclusters that
move in different directions at each collision with an
obstacle, with each subcluster experiencing a similar fate.
As a result of this process, the SPPs cannot form a highly
ordered particle flow. But if � is increased, clusters are less
cohesive and quickly spread out. This fast spreading
of clusters allows subclusters to quickly reconnect, and
orientational order information is more efficiently distrib-
uted across the system, see Fig. 2 (center). If we increase
� further, the noise ends up being too strong for the
alignment strength �b and the system becomes disor-
dered again.
Concluding remarks.—The same macroscopic behavior

is observed in various SPP systems, which provides a
strong evidence of the robustness and generality of the
reported results. In particular, the existence of an optimal
noise seems to be rooted in the fact that a certain amount of
noise facilitates, in the presence of obstacles, the exchange
of particles and information among clusters, which in turn
promotes the emergence of large correlations in the sys-
tem. Figure 4 shows in 4(a) that the use of the ‘‘no switch-
ing’’ interacting rule between SPP-obstacles, i.e.,
gðxiÞ ¼ 1, results in the same behavior, in Fig. 4(b) that
two interacting zones, for instance, a larger alignment zone
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FIG. 3 (color online). Finite size scaling. r vs � for various
system sizes Nb (color coded) for �o ¼ 2:55� 10�3 in (a) and
�o ¼ 0:102 in (b). The scaling of r with Nb at fixed � (color
coded) is shown in (c) and (d) for those obstacle densities shown
in (a) and (b), respectively. The solid curves correspond to
exponential fittings in (c) and power laws in (d), which suggests
the presence of LRO and QLRO, respectively.
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with a smaller and faster repulsion zone, mimicking a
hardcore repulsion as proposed in [22], do not alter the
obtained results, and in Figs. 4(c) and 4(d) that the same
macroscopic behavior is also observed with diffusing
obstacles. This last observation is of particular relevance
and extends the obtained results to fluctuating environ-
ments, which are of particular importance in biological
contexts, such as the self-organization of microtubules
inside the cell [1] or bacterial self-organization in hostile
environments, where either poisonous chemicals or bacte-
ria predators as lymphocytes diffuse around [2]. We notice
that the stronger the diffusion Do, the weaker the effect,
with an increase of Do playing a similar role as a decrease
of �o, Fig. 4(d).

Our analysis reveals—up to the system sizes we manage
to explore—that the presence of heterogeneous media
leads to an unexpectedly complex phase diagram, as sum-
marized in Fig. 5. A remarkable finding is the qualitative
change of behavior—in a two dimensional system with
continuum symmetry—from LRO and a unique critical
point (�c1), at low �o, to QLRO and two critical points
(�c1 and �c2), at high �o. Notice that QLRO occurs with
particles and interactions maintaining their polar symmetry
and at finite densities, while QLRO in homogeneous SPP
systems has been found with both particles and interactions
exhibiting apolar symmetry [27], as well as with metric
interactions but in the zero density limit only [28]. Finally,
there is a qualitative difference to previous ‘‘noise-induced
order’’ examples [24,29–34]: the increase of order occurs
here without requiring an external field or driving (and it is
not induced by boundary conditions). A direct comparison
with lane formation in systems with two populations of
particles driven by an external field in opposite directions
[24,29–31] reveals further important differences [35], with
the density of opposite moving particles playing the role of

our noise and the strength of the external field as the
inverse of our density of obstacles (cf. [29]).
In summary, we have reported about: 1) the existence of

an optimal noise for self-organized collective motion in
heterogeneous media, 2) a transition from LRO to QLRO
in 2D, 3) QLRO in SPP systems at finite density with
particles and interactions exhibiting polar symmetry,
and 4) an example of noise-induced order without requir-
ing an external field.
Numerical simulations have been performed at the

‘Mesocentre SIGAMM’ machine, hosted by Observatoire
de la Côte d’Azur.
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[22] G. Grégoire and H. Chaté, Phys. Rev. Lett. 92, 025702

(2004).
[23] Parameters: Rb ¼ Ro ¼ 1, �b ¼ �o ¼ 1, �b ¼ Nb=

L2 ¼ 1, v0 ¼ 1, and Do ¼ 0 (with a discretization time
�t ¼ 0:1).

[24] D. Helbing, I. J. Farkas, and T. Vicsek, Phys. Rev. Lett. 84,
1240 (2000).

[25] J.M.Kosterlitz andD. J. Thouless, J. Phys. C 6, 1181 (1973).
[26] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.110.238101 for
movies.
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