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A global phase diagram of disordered weak and strong topological insulators is established numerically.

As expected, the location of the phase boundaries is renormalized by disorder, a feature recognized in the

study of the so-called topological Anderson insulator. Here, we report unexpected quantization, i.e.,

robustness against disorder of the conductance peaks on these phase boundaries. Another highlight of the

work is on the emergence of two subregions in the weak topological insulator phase under disorder.

According to the size dependence of the conductance, the surface states are either robust or ‘‘defeated’’ in

the two subregions. The nature of the two distinct types of behavior is further revealed by studying the

Lyapunov exponents.
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Robustness against disorder is a defining property of the
topological quantum phenomena. Depending on the degree
of this robustness, three-dimensional (3D) Z2 topological
insulators (TIs) [1–3] are classified into strong and weak
(STI and WTI). Bulk-surface correspondence implies that
an STI exhibits a single helical Dirac cone that is protected,
while a WTI manifests generally an even number (possibly
null) of Dirac cones depending on the orientation of the
surface [4].

Unusual robustness of Dirac electrons (especially in the
case of a single Dirac cone) against disorder has been
widely recognized in the study of graphene [5,6]. As a
consequence of the absence of backward scattering [7], the
Dirac electrons do not localize. However, in the presence
of valleys (even number of Dirac cones) they do localize
mediated by intervalley scatterings [8]. Does this mean that
an STI continues to be an STI in the presence of arbitrarily
strong disorder, while a WTI simply collapses on the
switching on of the short-ranged potential disorder that
induces intervalley scattering?

Recent studies on the disordered WTI [9,10] seem
to suggest that the reality is much different. Our global
phase diagram depicted in Fig. 1 finds its way also in this
direction. This phase diagram is established by a combina-
tion of the study of the averaged two-terminal conductance
and of the quasi-1D decay length in the transfer matrix
approach. In the actual computation, the 3D disordered Z2

topological insulator is modeled as an Wilson-Dirac-type
tight-binding Hamiltonian with an effective (k-dependent)
mass term mðkÞ ¼ m0 þm2

P
�¼x;y;zð1� cosk�Þ [11],

implemented on a cubic lattice. The topological nature of
the model is controlled by the ratio of two mass parameters
m0 and m2 such that an STI phase with Z2 (one strong and
three weak) indices [4] ð�0; �1�2�3Þ ¼ ð1; 000Þ appears
when �2<m0=m2 < 0, while the regime of parameters
�4<m0=m2 <�2 falls on a WTI phase with
ð�0; �1�2�3Þ ¼ ð0; 111Þ [12].

The obtained ‘‘global’’ phase diagram depicted in Fig. 1
highlights the main results of the Letter. This phase dia-
gram shows how disorder modifies the above topological
classification in the clean limit (naturally as a function of
the strength of disorder W). To identify the nature of
different phases and the location of the phase boundaries
in the (m0=m2, W=m2) plane, use of different geometries
(i.e., bulk vs slab) is shown to be crucial. While a plateau of
the conductance in the slab geometry characterizes the
nature of the corresponding phase [e.g., Fig. 2(a)], the
phase boundaries are marked by a peak of the conductance
in the bulk geometry [e.g., Fig. 2(b)]. Under the breaking
of translational invariance by disorder, standard techniques
[4] for calculating the topological invariants fail. Yet, the
above behaviors of the conductance clearly distinguish
different topological phases, providing us with sufficient

FIG. 1 (color online). The ‘‘global phase diagram’’ of the
disordered Z2 topological insulator in the (m0=m2, W=m2) plane
determined by the behavior of two-terminal conductance. Solid
lines on the phase boundaries are guides to the eyes. Dotted lines
indicate the value of parameters relevant in Figs. 2 and 3. The
metallic (M) phase lies in the intermediate range of disorder
strength, typically 10 & W=m2 & 25 in the parameter range of
m0=m2 shown in this figure.
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information for establishing the phase diagram depicted in
Fig. 1.

Both STI and WTI phases in the clean limit (W ¼ 0)
survive in the presence of finite disorder, but collapse into a
metallic phase (theM phase in Fig. 1) at a finite strength of
disorder. We have confirmed the robustness of these insu-
lating phases by studying the system size dependence of
the average conductance hGi. The existence of surface
helical Dirac cones and their nature are revealed by study-
ing the generalized quasi-1D decay length �i. A more
specific comment on the global structure of the phase
diagram is that the STI exhibits a direct boundary with
the ordinary insulator (OI) phase [13], without being inter-
vened in by an appearance of the metal phase. This is quite
contrary to the case of the phase diagram for the 2D version
of our model, in which the symplectic metal phase parti-
tions the two insulating phases [14,15]. In the weakly
disordered regime, a couple of marked features are to be
mentioned. First, theWTI phase has an internal structure; it
is divided into WTI and defeated WTI (DWTI) regions,
reflecting the change of the system size dependence of the
conductance. This indicates that a WTI phase is in a sense
indeed weak compared with an STI. A detailed description
of the DWTI region is given toward the end of the Letter.
The second remark concerns the shape of the phase

boundaries between different insulating phases. The posi-
tions of these phase boundaries are determined by the
behavior of average conductance in the bulk and in the
slab geometries (see Fig. 2). The location of the STI/OI
boundary initially located at m0=m2 ¼ 0 in the clean limit
gradually moves toward the OI side while increasing dis-
order. This feature has been recognized in the study of the
so-called ‘‘topological Anderson insulator’’ [16–18]. Here,
we remark that a similar gradual shift of the phase bound-
ary also exists at the WTI/STI boundary. On this WTI side,
the STI turns out to be less expansive, invaded by the WTI.
This tendency is consistent with the result of SCBA calcu-
lation [19].
As a concrete implementation of a 3D Z2 topological

insulator on a lattice, we consider the following Wilson-
Dirac-type tight-binding Hamiltonian [11],

H ¼ X
x

X
�¼x;y;z

�
it

2
cyxþe�

��cx �m2

2
cyxþe�

�cx þ H:c:

�

þ ðm0 þ 3m2Þ
X
x

cyx�cx þ
X
x

vxc
y
x14cx; (1)

where cyx and cx are creation and annihilation operators on
a site x, e� is a unit vector, �� and � are gamma matrices

in the Dirac representation

�� ¼ 0 ��

�� 0

� �
; � ¼ 12 0

0 �12

� �
; (2)

where �� are Pauli matrices and 12 is a 2� 2 identity

matrix, m0, m2 and t are mass and hopping parameters,
and disorder potential vx are uniformly distributed between
�W=2 and W=2. For simplicity, we have assumed the
Hamiltonian to be isotropic. We set, as in Ref. [20], m2 ¼
1, t ¼ 2 (m2 is denoted as r in Ref. [20]). This Hamiltonian
belongs to the symmetry classAII [21] (or, DIII forW ¼ 0).
The transfer matrix [22,23] is given in terms of the wave

function c n on a slice at z ¼ n as

c nþ1

Hþc n

� �
¼Tn

c n

Hþc n�1

� �
; Tn¼ �H�1� Hn �H�1�

Hþ 0

� �
;

where Hn ¼ hnjHjni � E, H� ¼ hnjHjnþ 1i and Hþ ¼
hnþ 1jHjni. We set E ¼ 0 in this study, though similar
results are obtained for E ¼ 0:05.
To determine the phase boundaries between different

insulating phases, we calculate the (average) two-terminal
conductance, using the Landauer formula [24]. The trans-
port between the left and right terminals is described in
terms of the scattering matrix S defined as

c out
L

c out
R

� �
¼ S

c in
L

c in
R

� �
; S ¼ r t0

t r0
� �

; (3)

where c inðoutÞ
LðRÞ denotes the incoming (outgoing) state on the

left (right) terminal, and t and t0 (r and r0) are transmission
(reflection) matrices. The conductance G in units of e2=h is

FIG. 2 (color online). Two-terminal conductance hGi (a) in the
slab and (b) in the bulk geometries. hGi is plotted against m0=m2

for a system of size L ¼ 10 under different strength of disorder:
W ¼ 1 (green solid line), W ¼ 3 (red dashed line), and W ¼ 5
(blue dotted line). In the bulk geometry PBCs are imposed in
both the x and y directions, while in the slab geometry, a FBC is
applied to the x direction.
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given by G ¼ TrðtytÞ. To find the explicit form of the
S-matrix, we employ a transfer matrix for a system of length
L. The actual computation has been done in a cubic geometry
of L� L� L sites with electrodes attached to the z direc-
tion. We assume that the electrodes consist of L2 perfectly-
conducting 1D wires as in network models [24], so that
details of the electrodes do not affect the conductance.

To reinforce the validity of the phase diagram, we have
also studied the Lyapunov exponents in the quasi-one-
dimensional geometry of Lx � Ly �1. A Lyapunov expo-

nent �i is defined as

�i ¼ lim
M!1

ln�i

2M
; (4)

where �i is a positive eigenvalue of the matrix T yT , and
T ¼ TM � � �T2T1 is a product of theM transfer matrices of
dimension 8LxLy [22]. Due to the current conservation,�i’s

always come in reciprocal pairs and due to the Kramers
degeneracy, they are doubly degenerate. Keeping this in
mind, we arrange the exponents in the decreasing order,
�2LxLy

> �2LxLy�1 > � � �> �2 > �1 > 0>��1 > � � �>
��2LxLy

. The smallest positive Lyapunov exponent �1 is

identified as the quasi-1D decay length � by the correspon-
dence, � ¼ 1=�1. Here, we extend this to higher Lyapunov
exponents [25,26]:

�i ¼ 1

�i

: (5)

In the metallic phase, all the generalized decay length �i’s
increase monotonically as functions of the size of the cross
section Lx and Ly. In the OI phase, the decay lengths are

insensitive toLx andLy. In the topological insulating phases

with slab geometry, higher decay lengths behave similarly
to those of the OI phase, while the behavior of the largest
few �i’s is clearly distinguishable from those of
the OI phase. They are significantly large, but in contrast
to the metallic states, they show specific dependence on the
system’s thickness Lx. These behaviors reflect the nature of
the 2D surface states. Indeed, the number of these atypical
�i’s corresponds to the number of Dirac cones on a surface,
i.e., 1 for STI and 2 for WTI (DWTI) phases in Fig. 1.

Typical examples of the calculated conductance are
shown in Fig. 2. In the upper panel (a) the conductance is
calculated in the ‘‘slab’’ geometry, i.e., fixed boundary
condition (FBC) in the x direction and periodic boundary
condition (PBC) in the y direction (note z direction is the
direction of transport). The conductance shows a plateau
behavior, also quantized at hGi ¼ 2 in the STI, and at hGi ’
4 in the WTI phases. Note that near E ¼ 0, only the bands
passing through the Dirac point contribute to the transport,
and the quantization of the conductance at G ¼ n implies
that there are n Dirac cones where the backscattering is
strongly suppressed. In the lower panel (b), PBCs are
imposed in both the x and y directions (‘‘bulk’’ geometry).
The conductance is indeed very sensitive to the change of

these boundary conditions. The prominent feature is a sharp
peak at the phase boundary between different insulating
phases, while inside the insulating phases, irrespective of
their topological non-triviality (either in the STI, WTI, or
OI phases), the conductance tends to vanish in the thermo-
dynamic limit. The positions of the conductance peaks
show little dependence on L and have been used to deter-
mine the phase boundaries of Fig. 1.
In contrast to the expected quantized plateau due to the

surface Dirac cones, the quantization of the peak height of
conductance in the bulk geometry is unexpected [Fig. 2(b)].
At the phase boundaries between different insulating
phases, the bulk energy gap closes and in the model studied
3D Dirac cones emerge in the spectrum. The number of
such Dirac cones is 1 at the STI/OI boundary, while it is 3 at
theWTI/STI boundary. By studying the size dependence of
G, we have verified that the peak height of G approaches
indeed a quantized value, i.e., G ¼ 2 at the STI/OI bound-
ary, and G ¼ 6 at the WTI/STI boundary. Note that the
quantized values are twice the number of corresponding
Dirac cones. The factor of 2 comes from two time-reversal
pairs of conducting channels for each Dirac cone.
The above situation of an even number of channels

implies fluctuating nonquantized conductance due to dis-
order. As can be seen in Fig. 2(b), however, the height of
the conductance peak is insensitive to the strength of
disorder. We have also verified that the fluctuation of G
is strongly suppressed as approaching the peak. This is in
contrast to the 2D TI transitions, where a finite universal
fluctuation is observed [24]. This may be understood by
noting that the disorder becomes irrelevant near the 3D TI
transitions [27,28]. (See also Supplemental Material [29].)
Let us further quantify the transport characteristics of

the disordered STI and WTI phases (in Fig. 1) by the
analyses of the conductance and of the decay length.
In the STI phase, the conductance approaches the quan-
tized value G ¼ 2 irrespective of the disorder strength,
and forms a conductance plateau [see Fig. 2(a)]. In this
plateau region, the largest decay length �1 increases rap-
idly (exponentially) with Lx (see, e.g., Fig. 4), while the
remaining �i�2 are on the same order of their counterparts
in the OI phase. This implies that there remains a single
Dirac cone on each surface and in the limit Lx ! 1, it
becomes perfectly conducting, realizing effectively a sys-
tem of an odd number of channels (see Refs. [30,31]).
On the other hand, in the WTI phase, the size depen-

dence of the conductance implies that the WTI phase is
divided into two qualitatively different regions; the L
dependence of the conductance shows a contrasting behav-
ior in the two regions. For weak disorder (W & 4 for
m0=m2 ¼ �2:5), the conductance increases and asymp-
totically approaches a finite value G ’ 4 as L increases
[see Fig. 3(a)]. In this weakly disordered regime, the decay
lengths �1 and �2 tend to increase as �1 in the STI phase,
before being saturated as Lx increases (see Fig. 4) at a

PRL 110, 236803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
7 JUNE 2013

236803-3



value approximately 50 times larger than �3. The satura-
tion of � is caused by a small but finite intervalley scatter-
ing amplitude, which was absent in the STI phase.
Combining these two observations, one can convince one-
self that the surface states of a WTI indeed remain stable in
this regime of a finite disorder strength. On the contrary,
once the disorder exceeds a certain value (W ’ 4), the
conductance decays with increasing L (Fig. 3) and �1

and �2 do not show an exponential rise. Such a behavior
is indeed indistinguishable from the case of OI. What is
then the nature of these two regimes, WTI and DWTI in
Fig. 1? Are they distinct phases, and is there a transition
between the two? Our result suggests the following. The
absence of a conductance peak between the WTI and
DWTI regions [see Fig. 3(b)] implies that they are topo-
logically identical. Actually, �1 and �2, which correspond
to the surface states, are still large and distinguishable from
the bulk states (although they are smaller than those in the
STI and WTI phases). In the DWTI region, surface con-
ducting states are simply ‘‘defeated’’ by disorder. In this
sense we name this region the defeated WTI or DWTI
region. The fate of the WTI and DWTI regions in the
thermodynamic limit is highly nontrivial. We leave a

more substantial presentation on this point to a forthcom-
ing publication.
In this Letter, we have numerically investigated the

transport property of 3D weak and strong topological
insulators (WTI and STI). We have employed two
approaches, i.e., two-terminal conductance and Lyapunov
exponents, to identify different phases and expanded the
previously studied phase diagram, in particular, on the
WTI side. We found that the WTI phase has an internal
structure with an additional DWTI region. Although the
configuration of different disordered topological phases
and the absolute location of their phase boundaries are
model (and in experimental terms, material) dependent,
the general tendency studied in this Letter about how these
phase boundaries are renormalized by disorder is naturally
presumed to be model independent. Last but not the least,
the following two specific features uncovered in this Letter,
(i) quantization of the peak conductance characterizing
these phase boundaries to a universal value 2e2=h
(multiplied by the number of simultaneous gap closing),
(ii) the behavior of generalized decay length �i reflecting
the number of surface Dirac cones, are considered to be
generic, and applicable to any alternative models of the
WTI and STI.
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