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Using Bogoliubov theory we calculate the excitation spectrum of a spinor Bose-Einstein condensed gas

with an equal Rashba and Dresselhaus spin-orbit coupling in the stripe phase. The emergence of a double

gapless band structure is pointed out as a key signature of Bose-Einstein condensation and of the

spontaneous breaking of translational invariance symmetry. In the long wavelength limit the lower and

upper branches exhibit, respectively, a clear spin and density nature. For wave vectors close to the first

Brillouin zone, the lower branch acquires an important density character responsible for the divergent

behavior of the structure factor and of the static response function, reflecting the occurrence of crystalline

order. The sound velocities are calculated as functions of the Raman coupling for excitations propagating

orthogonal and parallel to the stripes. Our predictions provide new perspectives for the identification of

supersolid phenomena in ultracold atomic gases.
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The search for supersolidity represents a challenging
topic of research in different areas of condensed matter
and atomic physics (for a recent review see, for example,
[1]). Supersolidity was first predicted in the pioneering
works by Andreev and Lifschitz [2], Leggett [3], and
Chester [4]. It is characterized by the coexistence of two
spontaneously broken symmetries. The breaking of gauge
symmetry gives rise to off-diagonal long-range order
yielding superfluidity, while the breaking of translational
invariance yields diagonal long-range order characterizing
the crystalline structure. The first experimental efforts
toward the search of supersolidity were carried out in solid
helium [5]. The strongly interacting nature of this system
makes, however, the effects due to Bose-Einstein conden-
sation (BEC) extremely small and no conclusive proof of
supersolidity is still available in such a system [6]. More
recently, systematic attempts to predict the occurrence of
a supersolid phase have been carried out in atomic gases
with dipolar [7–9] and soft core, finite range interactions
[10–15]. However, these configurations have not yet been
experimentally realized in the quantum degenerate phase
required to observe the new effects.

The recent realization of spinor BECs with spin-orbit
coupling [17–20] is opening new perspectives in the field.
In systems with equal Rashba and Dresselhaus couplings
and for small values of the Raman coupling, theory in fact
predicts the occurrence of a stripe phase where transla-
tional invariance is spontaneously broken [21–23].
Actually these systems are periodic only in one direction
and can be considered as superfluid nematic liquid crystals.
Experiments are already available in the relevant range of
parameters, but no direct evidence of the density modula-
tions is still available, due to the smallness of the contrast
and the microscopic distance separating consecutive
stripes. A phase transition has been nevertheless detected

[20] at values of the Raman coupling below which theory
predicts the occurrence of the stripe phase.
The purpose of this work is to show that the excitation

spectrum of the gas in the stripe phase exhibits typical
supersolid features, like the occurrence of two gapless
bands and the divergent behavior of the static structure
factor for wave vectors approaching the boundary of the
Brillouin zone. The excitation spectrum is measurable in
Bragg spectroscopy experiments, so the experimental
characterization of the new phase should not represent a
major difficulty.
Spin-orbit-coupled BECs can be described using the

mean-field Gross-Pitaevskii picture. The interaction is
zero ranged and is characterized by the values of the
scattering lengths associated with the two hyperfine states
involved in the Raman process (we limit here the discus-
sion to spinor Bose gases). This differs from the case of
other systems, like dipolar gases, where the origin of the
supersolid phase is associated with the finite range of the
force [15]. The validity of the Gross-Pitaevskii approach
can be tested a posteriori by evaluating the quantum
depletion of the condensate.
We use the single-particle Hamiltonian (@ ¼ m ¼ 1)

h0 ¼ 1

2
½ðpx � k0�zÞ2 þ p2

?� þ
�

2
�x; (1)

accounting for the effect of two counterpropagating and
polarized laser fields, where k0 is fixed by the momentum
transfer of the two lasers, while � is the Raman coupling,
accounting for the intensity of the laser beams causing the
transition between the two spin states. The occurrence
of the term ��z=2 has been ignored in h0, since we will
consider situations where the effective magnetic field � is
zero (experimentally this can be achieved with a proper
detuning of the two laser fields). Hamiltonian (1) can be
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formally derived by applying a unitary transformation to
the Hamiltonian in the laboratory frame describing the
system in the presence of two detuned, spin-polarized
laser fields [26]. The unitary transformation consists of a
local rotation in spin space around the z axis, causing the
appearance of the spin-orbit term proportional to px�z.

Remarkable properties of this Hamiltonian are its trans-
lational invariance and, for �< 2k20, the occurrence of

a double-minimum structure in the single-particle energy

at momenta px ¼ �k1 with k1 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=4k40

q
, capable

to host a BEC. This structure is at the origin of new
intriguing features, like the existence of a spin-polarized
plane-wave phase and of an unpolarized stripe phase
[21,22] at even smaller values of �, resulting from the
spontaneous breaking of translational symmetry. From
general arguments one expects that the spontaneous
breaking of this continuous symmetry is at the origin of
a new gapless Goldstone mode.

The stripe phase arises due to the competition between
the density and spin-density interaction terms in the
mean-field Hamiltonian

Hint ¼ 1

4

Z
d3r½ðgþ g"#ÞnðrÞ2 þ ðg� g"#ÞsðrÞ2�; (2)

where nðrÞ ¼ n"ðrÞ þ n#ðrÞ and sðrÞ ¼ n"ðrÞ � n#ðrÞ cor-
respond to the total and spin densities. In Eq. (2) we have
assumed equal intraspecies interactions g"" ¼ g## � g [27]

with g�� (�, � ¼" , #) being the coupling constants in the

different spin channels. The stripe phase emerges only for
g"# < g, a condition yielding an unpolarized uniform

ground state in the absence of the Raman coupling �. It
is associated with the macroscopic occupation of a single-
particle spinor state of the form

c 0"
c 0#

 !

¼ X

�K

a�k1þ �K

�b�k1þ �K

 !

eið �K�k1Þx; (3)

where k1 ¼ �=d is related to the period d of the stripes,
�K ¼ 2nk1, with n ¼ 0;�1; . . . , are the reciprocal lattice
vectors while a�k1þ �K and b�k1þ �K are expansion coeffi-

cients to be determined, together with the value of k1,
by a procedure of energy minimization, including the
single-particle (1) and the interaction (2) terms in the
Hamiltonian. In the stripe phase, energy minimization
gives rise to the presence of terms with opposite phase
(e�ik1x; e�3ik1x; . . . ), responsible for the density modula-
tions and characterized by the symmetry condition
a�k1þ �K ¼ b�

k1� �K
, causing the vanishing of the spin polar-

ization. The stripe phase is favored at small values of the
Raman coupling. In the limit of weak interactions, defined
by the condition G1, G2 � k20 where G1 ¼ �nðgþ g"#Þ=4
and G2 ¼ �nðg� g"#Þ=4 with �n being the average density,

the critical value for the Raman frequency is given by

�cr ¼ 2k20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=ð1þ 2�Þp

with � ¼ G2=G1 independent

of the density, and the stripe phase is ensured for values
of � smaller than �cr. In the available experiments with
87Rb atoms [20,28], the value ofG2 (and hence�cr) is very
small. To enlarge the range of values of� compatible with
the stripe phase, it is useful to increase G2 as much as
possible. This is crucial to produce a significant contrast in
the density profile which is proportional to �=k20 [22].

In the following we will use the values G1=k
2
0 ¼ 0:3 and

G2=k
2
0 ¼ 0:08 yielding�cr=k

2
0 ’ 1:3. In Fig. 1 we show the

ground state density profile calculated at �=k20 ¼ 1:0. The
other quantum phases predicted by theory at larger values
of � are the plane-wave and the zero momentum phases.
In these phases the sum (3) contains only the term eik1x

(or e�ik1x) with k1 � 0 in the plane-wave phase and k1 ¼ 0
in the zero momentum one.
To evaluate the elementary excitations we apply

Bogoliubov theory by writing the deviations of the order
parameter with respect to equilibrium as

c "
c #

 !

¼ e�i�t

"
c 0"
c 0#

 !

þ u"ðrÞ
u#ðrÞ

 !

e�i!t þ
v�
" ðrÞ

v�
# ðrÞ

 !

ei!t

#

(4)

and solving the corresponding linearized time-dependent
Gross-Pitaevskii equations. The equations are conveniently
solved by expanding u";#ðrÞ and v";#ðrÞ in the Bloch form in

terms of the reciprocal lattice vectors:

uq";#ðrÞ ¼ e�ik1x
X

�K

Uq";# �Keiq�rþi �Kx; (5)

vq";#ðrÞ ¼ eik1x
X

�K

Vq";# �Keiq�r�i �Kx; (6)

whereq is thewave vector of the excitation. The same ansatz
can be used to calculate the density and spin-density dy-
namic response function, by adding to the Hamiltonian a

perturbation proportional to eiðq�r�!tÞþ�t and�ze
iðq�r�!tÞþ�t

with � ! 0þ, respectively.
The excitation spectrum predicted by Hamiltonians (1)

and (2) has been already calculated in both the plane-wave
phase and the zero momentum phases [26] where, despite
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FIG. 1 (color online). Density profile along the x direction.
The parameters are �=k20 ¼ 1:0, G1=k

2
0¼0:3, and G2=k

2
0¼0:08.
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the spinor nature of the system, only one gapless branch is
predicted as a consequence of the presence of the Raman
coupling �. A peculiar feature exhibited by the plane-
wave phase is the emergence of a rotonic structure whose
gap becomes smaller and smaller as one decreases the
value of �, providing the onset of the transition to the
stripe phase.

The results for the dispersion law of the elementary
excitations in the stripe phase are reported in Fig. 2 for
the same parameters used in Fig. 1. We have considered
excitations propagating in the x direction orthogonal to the
stripes and labeled with the wave vector qx. A peculiar
feature, distinguishing the stripe phase from the other
uniform phases, is the occurrence of two gapless bands.
At small qx we find that the lower branch is basically a spin
excitation, while the upper branch is a density mode, as
clearly revealed by Fig. 3(a) where we show the contribu-
tions of the two gapless branches to the static structure
factor SðqxÞ ¼ N�1

P
‘jh0j	qx j‘ij2 where ‘ is the band

index and 	qx ¼
P

ie
iqxxi is the density operator. The den-

sity nature of the upper branch, at small qx, is further
confirmed by the comparison with the Feynman relation
! ¼ q2x=2SðqxÞ (see Fig. 2). A two-photon Bragg scatter-
ing experiment with laser frequencies far from resonance,
being sensitive to the density response, will consequently
excite only the upper branch at small qx. Bragg scattering
experiments actually measure the imaginary part of the
response function, a quantity which, at enough low tem-
perature, can be identified with the T ¼ 0 value of the
dynamic structure factor Sðqx;!Þ ¼ P

‘jh0j	qx j‘ij2�ð!�
!‘0Þ, where !‘0 is the excitation frequency of the ‘th state
[29]. The spin nature of the lower branch is clearly revealed
by Fig. 3(b) where we report the contributions arising from
the two gapless branches to the spin static structure factor
S�ðqxÞ ¼ N�1

P
‘jh0jsqx j‘ij2, where sqx ¼

P
i�zie

iqxxi is

the spin-density operator. Notice that, differently from
SðqxÞ, the total spin structure factor does not vanish as
qx ! 0, being affected by the higher energy bands as a
consequence of the Raman term in Hamiltonian (1). The
lower branch exhibits a hybrid nature and, when approach-
ing the Brillouin wave vector qB ¼ 2k1, it is responsible

for the divergent behavior of the density static struc-
ture factor [see Fig. 3(a)], a typical feature exhibited by
crystals.
It is worth pointing out that the occurrence of two

gapless excitations is not by itself a signature of super-
solidity and is exhibited also by uniform mixtures of BECs
without spin-orbit and Raman couplings [30] as well as
by the plane-wave phase of the Rashba Hamiltonian
with SUð2Þ invariant interactions (G2 ¼ 0) [31]. Only the
occurrence of a band structure, characterized by the van-
ishing of the excitation energy and by the divergent behav-
ior of the structure factor at the Brillouin wave vector,
can be considered an unambiguous evidence of the density
modulations characterizing the stripe phase. The divergent
behavior near the Brillouin zone is even more pronounced
(see Fig. 4) if one investigates the static response function

ðqxÞ ¼ 2N�1

P
‘jh0j	qx j‘ij2=!‘0, proportional to the in-

verse energy-weighted moment of the dynamic structure
factor. The divergent behaviors of SðqxÞ and 
ðqxÞ can be
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FIG. 2 (color online). Lowest four excitation bands along the x
direction. The parameters are the same as in Fig. 1. The thin
dotted line corresponds to the Feynman relation ! ¼ q2x=2SðqxÞ.
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FIG. 3 (color online). Density (a) and spin-density (b) static
structure factor as a function of qx (blue solid line). The
contributions of the first (red dashed line) and second (black
dash-dotted line) bands are also shown. The parameters are the
same as in Fig. 1.
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FIG. 4 (color online). Static response as a function of qx (blue
solid line). The contributions of the first (red dashed line) and
second (black dash-dotted line) bands are also shown. The
parameters are the same as in Fig. 1.
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rigorously proven using the Bogoliubov [32] and the
uncertainty principle [33] inequalities applied to systems
with spontaneously broken continuous symmetries. These
inequalities are based, respectively, on the relationships
m�1ðFÞm1ðGÞ � jh½F;G�ij2 and m0ðFÞm0ðGÞ�jh½F;G�ij2
involving the pth moments mpðOÞ ¼ P

‘ðjh0jOj‘ij2 þ
jh0jOyj‘ij2Þ!p

‘0 of the ‘th strengths of the operators

F ¼ P
je

iqxxj and G ¼ P
jðpxje

�iðqx�qBÞxj þ H:c:Þ=2. The
commutator h½F;G�i ¼ qxNheiqBxi, entering the right-hand
side of the inequalities, coincides with the relevant crys-
talline order parameter and is proportional to the density
modulations of the stripes [34]. The moments m�1ðFÞ and
m0ðFÞ are instead proportional to the static response 
ðqxÞ
and to the static structure factor SðqxÞ, respectively. It is not
difficult to show that the moments m1ðGÞ and m0ðGÞ are
proportional, respectively, to ðqx � qBÞ2 and to jqx � qBj
as qx ! qB due to the translational invariance of the
Hamiltonian. This causes the divergent behaviors SðqxÞ /
1=jqx � qBj and 
ðqxÞ / 1=ðqx � qBÞ2 with a weight fac-
tor proportional to the square of the order parameter [34].

In addition to the excitations propagating along x
(longitudinal modes), another class of Bogoliubov modes
is predicted in the transverse directions, parallel to the
stripes. These modes are excited by the density and spin-
density operators

P
ie

iqyyi and
P

i�zie
iqyyi . Remarkably,

also in the transverse channel, Bogoliubov theory predicts
the occurrence of two gapless spectra. Similarly to the
longitudinal channel, at small qy the lowest and upper

branches have a spin and density character, respectively.
In Fig. 5 we compare the sound velocities of the two

gapless branches in the longitudinal (cx) and transverse
(c?) directions. We find that cx is always smaller than c?,
reflecting the inertia of the flow caused by the presence of
the stripes. The value of c? in the second band (second
sound) is well reproduced by the Bogoliubov expressionffiffiffiffiffiffiffiffiffi
2G1

p
(equal to 0:78k0 in our case) for the sound velocity.

Notice that the spin sound velocity becomes lower and
lower as the Raman frequency increases, approaching the

transition to the plane-wave phase. The Bogoliubov solu-
tions in the stripe phase exist also for values of � larger
than the critical value �cr ¼ 1:3k20, due to the first-order

nature of the transition.
We have finally checked that the quantum depletion of

the condensate, due to the fluctuations associated with the
Bogoliubov solutions, is always small, thereby confirming
the validity of the mean-field approach.
In conclusion we have shown that the excitation spec-

trum in the stripe phase of a spin-orbit-coupled BEC
exhibits a double gapless band structure, typical of super-
solids. We predict that at small wave vectors the lower
and upper branches have, respectively, a spin and density
nature. The lower branch, whose gapless nature is due to
the breaking of translational symmetry, is responsible for
the divergent behavior of the static structure factor as the
wave vector approaches the border of the Brillouin zone.
The experimental verification of the new dynamic features
predicted in this Letter is expected to provide a significant
advance in our understanding of systems exhibiting simul-
taneously off-diagonal and diagonal long-range order.
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