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We investigate the behavior of a two-dimensional inviscid and incompressible flow when pushed out of

dynamical equilibrium. We use the two-dimensional vorticity equation with spectral truncation on a

rectangular domain. For a sufficiently large number of degrees of freedom, the equilibrium statistics of the

flow can be described through a canonical ensemble with two conserved quantities, energy and enstrophy.

To perturb the system out of equilibrium, we change the shape of the domain according to a protocol,

which changes the kinetic energy but leaves the enstrophy constant. We interpret this as doing work to the

system. Evolving along a forward and its corresponding backward process, we find numerical evidence

that the distributions of the work performed satisfy the Crooks relation. We confirm our results by proving

the Crooks relation for this system rigorously.
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The second law of thermodynamics states that the aver-
age work necessary to move a thermodynamic system,
coupled to a heat bath, from one state of thermal equilib-
rium to another is bounded by the free energy difference
between the final and initial state, hWi � �F. Here, equal-
ity holds for reversible processes only. The additional
amount of work depends on the protocol. In many situ-
ations, though, a more detailed relation for the statistics of
this work holds, known as Crooks relation [1]:

PfðWÞ
Pbð�WÞ ¼ e�ðW��FÞ: (1)

Here, PfðWÞ denotes the probability density of the work

obtained in the forward process, while PbðWÞ is the density
of the work obtained in the backward process (i.e., under a
time reversed protocol). The ratio is given in terms of the
inverse temperature � and the free energy difference �F,
i.e., parameters of the equilibrium of the system, only.
Relation (1) may hold arbitrarily far from equilibrium.
As of today, the Crooks relation, together with the
Jarzynski relation [2], provides a very important general-
ization of thermodynamic work theorems into the fully
nonequilibrium regime. Investigation into these relations
and refinements is ongoing, see, e.g., [3,4]. The Crooks
relation has been investigated in a number of situations,
either numerically, analytically or experimentally [5–12].

We demonstrate that Eq. (1) holds for a two-dimensional
inviscid and incompressible flow on a rectangular domain.
The only physical parameter of this system, apart from
those set by initial conditions, is the shape of the domain,
which we change in order to drive the system out of
equilibrium. This entails changes in the kinetic energy,
which are interpreted as work. In our situation the

fluctuations of the work are not due to random forces
exerted by a heat bath, but are caused by chaoticity of
the dynamics. By describing the flow in equilibrium
through a canonical ensemble, we obtain the parameters
� and �F for Eq. (1). One should keep in mind that the
system is not thermodynamic in the classical sense; and
whether� should be considered an inverse temperature is a
matter of interpretation. We will nonetheless refer to it as
Crooks relation. We demonstrate the Crooks relation nu-
merically and prove it rigorously at the end of this Letter.
The numerical results show interesting details which are
not revealed by the proof and are therefore included.
An inviscid and incompressible flow on a two-

dimensional Riemannian manifold M obeys the vorticity
equation,

@t! ¼ 1

g
ð�@xc @y!þ @yc @x!Þ; �c ¼ !: (2)

Here, c is the stream function, which gives the velocity as
vi ¼ g�1ð�@yc ; @xc Þ, i ¼ 1,2; and ! is the vorticity.

This guarantees divðvÞ ¼ g�1@iðgviÞ ¼ 0. Further, g is
the Riemannian volume, and � is the Laplacian with
respect to the Riemannian metric tensor gij.

The physical parameters of this equation are the entries
of the metric tensor. We consider a situation in which the
metric tensor is time dependent, but in a way that leaves the
Riemannian volume g constant. (Otherwise, the notion of
incompressibility would need to be reinterpreted.) Starting
from the principle of least action, it can be shown that in
this situation the vorticity equation still applies. (The Euler
equations though will contain another term, reflecting the
time dependence of the metric.)
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In this Letter M is a simple rectangle of size L� 1=L.
Here, g equals one. For a point (x, y) on M we use
coordinates � ¼ x=L, � ¼ yL, in order to make flows on
different domain sizes easily comparable. The vorticity
equation in this setting now reads:

@t! ¼ �ð@�c @�!� @�c @�!Þ; (3)

�
1

L2
@2� þ L2@2�

�
c ¼ !: (4)

Two important characteristics of the flow are its kinetic
energy E and its enstrophy �2, defined as

E ¼ 1

2

Z
dVggijv

ivj ¼ 1

2

Z 1

0

Z 1

0
d�d�c!; (5)

�2 ¼
Z

dVg!2 ¼
Z 1

0

Z 1

0
d�d�!2: (6)

They are conserved by the dynamics as long as the metric,
i.e., L, is kept constant.

Each time-dependent choice LðtÞ will be volume-
preserving by construction. Therefore the enstrophy will
stay constant during time evolution but the energy will not.
It changes according to

dE

dt
¼ � _L

L

Z
d�d�

�@2�c
L2

� @2�cL2

�
c : (7)

The evolution of the kinetic energy depends on the micro-
state of the flow, more specifically, on c and its second
derivatives. Even for fields ! having initially the same
energy, the energy change is different as it depends on
the details of !ð�;�; tÞ.

In our simulations we solve Eqs. (3) and (4) with time-
dependent LðtÞ numerically. We use a pseudospectral
method with a truncated Fourier series of the vorticity
withN � N complex Fourier amplitudes�kl. The ordinary
differential equation (ODE) for the Fourier amplitudes�kl

is integrated with a Runge Kutta scheme of fourth order
with adaptive step size. The wave numbers included are all
k, l with 0< k2 þ l2 <K2 and K ¼ 26. For all the results
shown here we use a doubly periodic domain. (Everything
still applies for boundary conditions that prohibit flow
through the boundaries.) In this approach, the integral
formulations of energy, Eq. (5), and enstrophy, Eq. (6),
are replaced by sum formulas. An important property of
the truncated equations is that energy and enstrophy
remain conserved quantities for constant L.

There exists a number of approaches trying to character-
ize the equilibrium of two-dimensional inviscid and in-
compressible fluid flow, which emphasize different
features (see, e.g., [13,14]; or [15] and references therein
for an overview). The one used in the present context is
most suited to describe a truncated fluid flow. It character-
izes the equilibrium of the flow by a generalized canonical
ensemble of the dynamically conserved quantities energy

and enstrophy, according to [16,17]. This ansatz provides a
good approximation of the relevant momenta of the com-
plex Fourier amplitudes for equal to or more than 16� 16
grid points [18,19]. The density of states for the general-
ized canonical ensemble is written as the inverse partition
function Z times an exponential term,

Pðf�klgÞ ¼ 1

Z
exp½���2ðf�klgÞ � �Eðf�klgÞ�: (8)

Here, � and � are Lagrangian multipliers preserving the
expectation values of energy and enstrophy. The density
splits into a product of densities of states for the complex
amplitude of each mode �kl, and can be integrated. Both
the real and imaginary part of a mode�kl have a Gaussian
distribution with zero mean and standard deviation
�klðL;�; �Þ. The mean values of energy and enstrophy
(and their spectra) are given through � and �. The density
is normalizable even if either � or � is negative. Further
details can be found in [16,17]. Even though there is no
discontinuous change of property between the three
regimes, where either � or � is negative or both are
positive [17], we numerically checked our results in all
three regimes. The region of most interest is, where �< 0,
because there the energy per wave number decreases for an
increasing wave number. Fields from this regime give the
best approximation to real fluid fields (with low viscosity),
where the excitation of the highest wave numbers can be
neglected (see [17,20]). For �< 0 the equilibrium statis-
tics introduced here can be connected to typical turbulence
phenomena [21].
To characterize the nonequilibrium we explore the

change of a field’s kinetic energy during a process with
time-dependent LðtÞ. We sample fields from the general-
ized canonical distribution, Eq. (8). For this we have to fix
the Lagrangian multipliers � and� as well as L. One could
think of canonically prepared fields, which are decoupled
from the reservoirs � and � while running the process.
Speaking about reservoirs should emphasize the analogy to
a physical system (e.g., of particles), which are coupled to
a heat bath of inverse temperature �, which motivates the
choice of this ensemble.
The values we choose are � ¼ 3, � ¼ �60, and a

quadratic domain size, i.e., L ¼ 1. We apply a protocol
to each of these fields, where we linearly change the
domain length (and inversely the height) LðtÞ ¼ 1þ ht
for t 2 ½0; te ¼ �=h�. The parameter h is the speed of
the process and � the maximal difference between the
length of the rectangle and the square. Figure 1 shows a
scatter plot of each field’s final energy over its initial
energy for two different protocol speeds h. Two character-
istics should be pointed out: First, different fields with the
same initial energy (i.e., which lie on one vertical line in
Fig. 1) will end up with different final energies, because the
change in energy depends on the details of the entire field
(see equation (7), and text below). Second, the distribution
for the slow process (blue dots) lies nearly fully within the
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distribution of the fast process (orange dots), because in a
slower process the fluctuations in the energy have more
time to cancel out each other.

To probe the Crooks relation, a backward process has
to be performed. Vorticity fields stem from a generalized
canonical distribution with the same � and � as in the
forward process, but this time rectangular domain size L ¼
1þ�. The inverse protocol is run, Lðte � tÞ. Thereby,
work distributions are obtained, where the work is defined
as W ¼ Eend � Einit. The distributions of the work in the
forward and backward process should fulfill the Crooks
relation, Eq. (1). For our system, we still need to define the
free energy used in Eq. (1). We do this in formal analogy to
the canonical ensemble as �ð1=�Þ logZ. The free energy
difference �F is then calculated:

�F ¼ 1

�
log

�
Z1

Z1þ�

�
(9)

with Z being the partition function as introduced in Eq. (8).
The indices 1 and 1þ� indicate which values L have to be
used to calculate Z. We name the quantity F free energy,
knowing full well that this term usually defines a thermo-
dynamic potential depending on temperature and volume.
One could think of replacing the variable for the volume
by the variable for the enstrophy. However, this definition
of the free energy (difference) is justified. As we shall see
later on, the value calculated through Eq. (9) is exactly the
intersection point of the work distributions fulfilling the
Crooks relation, i.e., the number which is represented by
�F in Eq. (1) [see Fig. 2(a)].

One could extend Eq. (1) by a term e����2
to generalize

the equation to a system with a second reservoir, as it is the
case here (see [1]). Because the enstrophy does not change
during the process, this additional term is not necessary.

The work distributions are obtained from sampling
20 000 fields. In the process we apply the protocols intro-
duced above with several different velocities h. Consider

Fig. 2(a), where we present the results for the system with
� ¼ 3, � ¼ �60. Shown are the probability density func-
tions (approximated by histograms) of the (positive) work
distribution in the forward and the negative work distribu-
tion in the backward process. This is done for a slow
process (in blue) and a faster one (in orange). The distribu-
tions are highly asymmetric and far from being Gaussian.
For most experiments and simulations that have been
reported in the literature, the maxima of the distributions
are somewhat separated, with the graphs intersecting at a
point in between (see [5–9]). Here, however, the maxima
are very close to each other, with the point of intersection
further away to the right of both. Notice that indeed this
point of intersection is given by the free energy difference
calculated through Eq. (9).
Calculating the expectation value of the work in the

distributions shown in Fig. 2(a), one finds that it is actually
smaller than �F (or resp. hWi � ��F in the backward
process), thus apparently violating the second law. The
reason for this behavior is the negative temperature. In

FIG. 2 (color online). The Crooks relation for a double peri-
odic domain with fields chosen from a canonical distribution.
Parameters: � ¼ 3, � ¼ �60, � ¼ 0:5, h ¼ 0:05 (blue), h ¼
0:5 (orange). �F ¼ 5:60029� 10�3 [Eq. (9)]. (a) Work distri-
butions from deforming the domain from square to rectangle.
Solid line: Forward process; Dotted line: Backward process
[distribution of negative work Pbð�WÞ]. The ordinate has differ-
ent scales for the blue and the orange distributions to facilitate
presentation. (b) Dots: Ratio of the numerically sampled work
distributions, plotted on a logarithmic scale. Solid line: Right-
hand side of Eq. (1) for parameters as given above.

FIG. 1 (color online). Scatter plot of each field’s final energy
over its initial energy. (Sample size: 2000) Fields are sampled
from a canonical distribution with � ¼ 3, � ¼ �60. The simu-
lated process is LðtÞ ¼ 1þ ht 2 ½1; 1:5� with two different
speeds h ¼ 0:05 (blue dots) and h ¼ 0:5 (orange dots). The
red line indicates equal initial and final energy.
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fact, using the Crooks relation and Jensen’s inequality one
gets 0 � �ðhWi � �FÞ for any �. This gives hWi � �F
for positive temperature but hWi � �F in our case. The
difference is usually referred to as the dissipated work
Wdiss ¼ W � �F. See Fig. 3. This figure also shows that
the absolute value of the mean of the dissipated work
decreases for slower processes. This supports the analogy
to ‘‘ordinary’’ thermodynamic systems, where the absolute
value of the mean of the dissipated work decreases when
slowing down the protocol in order to reach the reversible
limit (hWdissi ¼ 0) for an infinitely slow process.

Introducing the dissipated work we want to emphasize
that we do not simulate a complete thermodynamic cycle,
but only the parts where the protocols are applied. Because
the system considered here is thermally isolated during the
process, all work, which was not used to overcome the free
energy difference, would be dissipated by bringing the
system in contact with a heat bath after the protocol has
finished. This thermalization is not simulated explicitly
here (especially as it is not clear what this would mean in
terms of evolution equations for the flow), but mimicked by
simply discarding the fluid fields in favor of another inde-
pendent sample from the canonical distribution in order to
initialize a simulation in the reverse direction.

Considering the highly asymmetric distributions of
Fig. 2(a), it seems even more surprising that the Crooks
relation indeed holds for these distributions. In Fig. 2(b) we
show the logarithm of the ratio of the bar heights of the
histogram (points). The solid line is not a fit, but the linear
function �ðW � �FÞ with � being the Lagrangian multi-
plier determining the initial ensemble, and �F given by
Eq. (9). It fits both the blue and the orange dots reasonably
well. This is clear evidence that the Crooks relation holds
for the kind of process considered. The larger deviations
for low or high values of work are due to the low number of
events with the corresponding work. One may get the
impression that the deviations are systematically above
the solid line on the right end and below the solid line on
the left end. This is correct. The reason for this is that the
values on the ordinate are logarithms of ratios of positive

integers. If either the denominator or the numerator is zero,
the ratio is not plotted. Doing this, one systematically
overestimates the numerator (for high values of W) resp.
the denominator (for low values of W) and is thus system-
atically above resp. below the solid line.
In our situation, the Crooks relation can even be dem-

onstrated rigorously. We will provide a sketch of the proof,
only. The truncated vorticity equation essentially amounts
to a system of ordinary differential equations _x ¼ vðt; xÞ.
The time dependence of the latter is due to parameters of
the equation being changed according to a protocol �ðtÞ. If
we specify an initial time ts and some initial point x 2 �,
then integrating this ODE to some terminal time te gives a
terminal point �ðxÞ 2 �. The mapping � so defined (to
which we refer as the forward flow) is a diffeomorphism on
�. Furthermore, since divðvÞ ¼ 0, the Jacobian of � is
one. Integrating the ODE backward under the time
reversed protocol, we obtain the backward flow �ðxÞ ¼
� � ð�Þ�1 � �ðxÞ, where simply �ðxÞ ¼ �x. Necessarily,
the Jacobian of �ðxÞ is one, too. Let E� be the energy,
which is invariant under �. The work of the forward resp.
backward flow are defined asWfðxÞ ¼ E1 ��ðxÞ � E0ðxÞ,
WbðxÞ ¼ E0 ��ðxÞ � E1ðxÞ, respectively. Due to the
invariance of the energy with respect to �, we have that
Wb � � ��ðxÞ ¼ �WfðxÞ. Further, let �2 be the enstrophy,

which does not depend on the parameter and is invariant
under both � and the flow. Using the energy and the ens-
trophy, we now introduce the (generalized canonical)
probability distributions

dP� ¼ eS�ðxÞdx; S�ðxÞ ¼ �½F� � E�ðxÞ� � ��2ðxÞ:

With these prerequisites, it can be shown that for any
function �,

E0½�ðWfÞ� ¼ E1½�ð�WbÞe��ðWbþ�FÞ�; (10)

where E0, E1 are the expectation values with respect to P0,
P1, respectively. Equation (10) implies the Crooks relation.
The proof of Eq. (10) is as follows:

E0½�ðWfÞ�
¼

Z
�
�ðWfðxÞÞeS0ðxÞdx

¼
Z
�
�ðWfðxÞÞeS0ðxÞ�S1��ðxÞeS1��ðxÞdx

¼
Z
�
�ðWfðxÞÞe�WfðxÞ���FeS1��ðxÞdx

¼
Z
�
�ð�Wb � � ��ðxÞÞe��ðWb����ðxÞþ�FÞeS1��ðxÞdx

¼
Z
�
�ð�WbðxÞÞe��ðWbðxÞþ�FÞeS1ðxÞdx

¼ E1½�ð�WbÞe��ðWbþ�FÞ�:

FIG. 3 (color online). This graph shows the average dissipated
work in the forward (black) and backward (blue) process, versus
the total time of the protocol te.
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To summarize, we have successfully verified the
Crooks fluctuation theorem, Eq. (1), for an inviscid two-
dimensional flow, both numerically as well as analytically.
This is remarkable, for two reasons, first since the fluctua-
tions in the system are not the consequence of a stochastic
process, but the outcome of deterministic equations which
generate turbulent and mixing behavior of the fluid field.
Second, the Crooks relation holds despite highly asymmet-
ric distributions of the work performed on the system. This
numerical experiment was run with considerably low nu-
merical resolution in order to provide a sufficiently large
sample. However, the outcome can be considered as a point
of reference for computationally expensive simulations or
for real fluid experiments, especially with low viscosity.
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