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We present a laboratory study on the instability of internal wave attractors in a trapezoidal fluid domain
filled with uniformly stratified fluid. Energy is injected into the system via standing-wave-type motion of a
vertical wall. Attractors are found to be destroyed by parametric subharmonic instability via a triadic
resonance which is shown to provide a very efficient energy pathway from long to short length scales. This
Letter provides an explanation of why attractors may be difficult or impossible to observe in natural

systems subject to large amplitude forcing.
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Introduction.—Energy transfer from large to small scale
is a critical issue in the dynamics of large geophysical
systems such as ocean and atmosphere. In this context,
internal waves are of particular interest due to their specific
dispersion and reflection properties. In a uniformly strati-
fied fluid of infinite extent, which is the usual simplification
of a realistic slow-varying stratification, internal waves
propagate as oblique beams obeying [1] the following
dispersion relation 6 = arccos(w/N), where 6 is the angle
between the wave beams and the vertical, w the wave
frequency, N = [—(g/p)(dp/dz)]"/? the constant buoy-
ancy frequency, and p(z) the density stratification a func-
tion of the vertical coordinate z. Consequently, the beam
angle with respect to the vertical is preserved when the
beam is reflected at a rigid boundary. These restrictive
conditions give a purely geometrical reason for strong
variations of scale (focusing or defocusing) when an
internal-wave beam is reflected at a sloping boundary.
The complex dynamics of this phenomenon has been
extensively studied [2,3].

In confined fluid domains, focusing usually prevails:
successive reflections of internal wave beams at rigid
boundaries produce, interestingly, nearly closed loops
which gradually converge toward a closed trajectory, an
internal wave attractor [4]. Ray trajectories in arbitrary
shaped containers are generally not closed, and therefore,
energy injected in the domain is evenly distributed. On
the contrary, when an attractor is present as in Fig. 1(a),
essentially all the energy is concentrated on a few beams
defining the limit cycle and, consequently, injected energy
being focused, nonlinear instabilities are more likely to be
expected. Experimentally, an attractor was first demon-
strated in a trapezoidal domain filled with uniformly strati-
fied fluid [5]. Simplistic considerations of a wave-ray
billiard lead to the unphysical conclusion of vanishingly
small width of attractor branches (infinite focusing). In
reality, a finite width of wave beams is set by the balance
between geometric focusing and viscous broadening [6,7].
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Attractors were shown to be sufficiently robust to be
observable in a nonuniform stratification and in test tanks
with corrugated walls [8] as well as in laterally infinite
fluid domains with appropriate bottom topography [9].
The significance of wave attractors has been recognized
in rotating fluids [10] and proposed for magnetized
materials [11].

Theoretical studies on the behavior of a hyperbolic
system describing attractorlike structures in confined
domains reveal highly complicated dynamics. However,
this rich dynamics arises in strictly linear partial differen-
tial equations, which form the background of existing
theoretical studies [11]. Numerically, nearly all studies of
wave attractors solve linear equations of motion as stressed
in [6]. Experimentally, attractors are usually generated by
low-amplitude vertical or horizontal oscillations of test
tanks filled with stratified fluids [5,7,8] or by a modulation
of the angular velocity in rotating fluids [12]. Oscillations
of small objects have also been used to produce internal
waves forming attractorlike patterns in 2D [11] and
3D [13] geometries. Experimentally observed attractors
had, therefore, relatively low energy and their behavior
can be explained by linear mechanisms. In this connection,
a number of important questions arise. What happens to
wave attractors as the amount of injected energy increases?
What is the main mechanism of instability which destroys
wave attractors? Does the instability produce new length
scales which are shorter than the equilibrium width [7] of
the attractor? What is beyond the instability? In the present
Letter, we address all these issues experimentally.

Experiment.—To generate internal wave attractors with
a high level of injected energy, we use a novel approach,
presented in Fig. 1(b). Experiments are performed in a
quiescent test tank. The classic trapezoidal geometry [5]
is designed with a sliding sloping wall which can be slowly
inserted into the fluid once the test tank is filled. The
energy is injected into the experimental system by the
internal wave generator [14—16] tuned to produce the first
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FIG. 1 (color online). Panel (a) presents the prediction of a
wave-ray billiard with a bottom length L = 45.6 cm and a depth
H = 32.6 cm, while the sloping wall is inclined at an angle a =
30° with the vertical (wy/N = 0.62). The ray direction (defined
by the group velocity) of the limit cycle is counterclockwise as
shown by red arrows. Panel (b): Corresponding experimental
setup showing the wave generator and the sloping wall inside the
immobile tank of size 80 X 17 X 42.5 cm. The working bottom
length of the section, the depth, and the sloping angle are the
ones given in panel (a). Conventional double-bucket technique is
used to create a uniform stratification with a buoyancy frequency
N = 0.95 rad/s.

vertical mode for internal waves in finite depth H. The time
dependent profile of the generator, and therefore, of the left
side of the tank, is given by

1(z, t) = acos(mz/H) cos(wt), (1)

where a is its amplitude. The profile (1) is reproduced in
discrete stepwise form by the motion of 51 horizontal
plates driven by the rotation of a vertical camshaft. Since
the thickness of each plate is small compared to the width
of the wave-attractor beams, the discretization does not
produce any secondary perturbations to the wave field, in
agreement with [8,15]. The perturbations of the density
gradient are evaluated with the synthetic schlieren tech-
nique [17] from apparent displacements of elements of the
background random dot pattern placed behind the test tank.
A series of experiments has been performed varying
the parameters a € [0.15,0.5] cm, wo/N € [0.49, 0.83],
and @ = 15° or 30°. We will emphasize now the cases
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FIG. 2 (color online).

a = 30° and wy/N = 0.62, but it is important to stress
that all results are fully reproducible and lead to similar
conclusions.

Results and discussion.—The evolution of observed
internal wave patterns with time is presented in Fig. 2 for
a moderately large amplitude a = 0.25 cm. One can see
that the attractor reaches its fully developed state after a
transient of roughly 30 periods of oscillation of the gen-
erator T, = 27/ w,. The direction of this (1, 1) attractor
(one reflection at the surface and one reflection at the
vertical sidewall) is counterclockwise in agreement with
dominant focusing effects in bucket geometry [4,5].

At a later stage, which is emphasized by Fig. 2(d)
presenting the snapshot ¢+ = 507, an instability builds up
in the most energetic (focusing) branch of the wave attrac-
tor. Figure 3 shows precisely the time series recorded in the
focusing branch of the wave attractor. It is clearly apparent
that once the generator has been switched on, the ampli-
tude of the horizontal density gradient field increases: then,
as one could expect from the inspection of the first three
snapshots of Fig. 2, an equilibrium value is reached after
slightly more than 20 periods. However, it is also visible
that, for amplitude a larger than 0.25 cm, the motion is
much less regular in a later stage, corresponding presum-
ably to a superposition of several components.

Figure 2(d) reveals that the instability develops in the
form of oblique distortions of the wave beam, reminiscent of
a typical pattern of parametric subharmonic instability (PST)
via triadic resonance [16,18]. The studies on wave-wave
interactions, including triadic resonance, has a long history
[19]. The significance of triadic resonance among other
possible mechanisms of internal-wave instability in oceano-
graphic applications is a debated issue [20]. However, there
is a growing body of evidence [16,18,21-23] that it is a
major mechanism of instability in many practical circum-
stances. Energy transfer from the primary wave to two
secondary waves is known to be possible when wave fre-
quencies and wave vectors satisfy both the temporal

Wy = W + w-, (2)
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Snapshots of the vertical density gradient field for ¢ = 67T, (a), 127 (b), 30T, (c), 50T, (d) where T, = 27/ w

is the primary wave period. Note that the shade (color online) scale is the same in all panels. The wave frequency is w,/N =
0.62 £ 0.02 and the motion amplitude of the plates of the generator is set to @ = 0.25 cm. The small white rectangle in panel (c)
defines the acquisition region used for computing the time-frequency spectrum used for Fig. 4.
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FIG. 3 (color online). Evolution versus time of the amplitude
of 9,p in the focusing branch of the internal wave attractor,
measured in point A defined in Fig. 2(d). The different panels
correspond to different values of the injected energy measured
through the amplitude of the cames: @ = 0.2 cm (a), 0.25 cm (b),
and 0.5 cm (c).

and the spatial
k() = kl + k2, (3)

conditions for triadic resonance, where subscripts 0, 1, and 2
refer to the primary, and both secondary waves, respectively.
Let us check the fulfillment of Egs. (2) and (3) in our case.

Figure 4 presents the time-frequency spectrum, defined
as in [16,18], of an area in the focusing branch of the
attractor. This picture confirms that the amplitude of the
main frequency component reached quickly its asymptotic
value, however this representation emphasizes also that the
frequency content is very rich. The main frequency com-
ponents revealed via time-frequency analysis are listed in
Table I. The measured frequency of the primary wave is
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FIG. 4 (color online). (a) Time frequency spectrum S, (w, t) of
the horizontal density gradient field for a = 0.25 cm. Data were
averaged on the small white rectangle shown in Fig. 2(c).
(b) Frequency spectrum S, (o, = 507T,). The quantity S, is
defined as the time average of the main component (S, (wy, 1)).

TABLE I. Main frequency values of the attractor determined
with the time-frequency values and the corresponding values of
the wave vector components (€, m) that have been measured with
the Hilbert transform [24]. Both components of the wave vector
have been computed with k = —V ¢ where ¢ corresponds to
the phase shown in Fig. 5. Errors in measurements of k; are
larger as phase lines are more horizontal and the measurement
zone near the slope is smaller. Characteristics of the initial
injection are calculated from the frequency value and the vertical
wave number m, = 7/H = 9.64 m~!.

Location Subscript wy/N € (m™1) m@m™) k| m"
Injection * 0.62 +7.6 *9.6 123
Attractor 0 062 —-64(x£1) =76(x1 99
Attractor 1 024 +39(£5) +177 (=x10) 181
Attractor 2 0.38 —108 (£3) —265(*3) 287

equal to the forcing frequency wg, while the values for the
secondary waves show that the temporal resonance condi-
tion (2) is satisfied with good accuracy. All frequencies
satisfy the dispersion relation individually. For the sake of
completeness, note that two smaller peaks are also visible
in Fig. 4 thanks to the logarithmic scale. Corresponding
to the buoyancy frequency N and N cosa, the oscillations
along the inclined wall, these two natural frequencies are
excited as expected for a nonlinear system.

The Hilbert transform, first introduced for internal-wave
analysis in [24], is a powerful tool for the investigation of
PSI, especially to analyze the spatial resonance condition
[16,18]. The results of filtering the raw data at frequencies
Wy, w1, and w, are presented in Fig. 5. The corresponding
numerical data on the components of the primary
and secondary wave vectors can be readily obtained by
differentiating the phase with respect to both spatial
variables; results are presented in Table I. It can be seen
that the spatial resonance condition (3) is satisfied with
a reasonable accuracy (€5 = €| + €, and mgy = m| + m,).
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FIG. 5 (color online). The top (respectively, bottom) row
presents the real part (phase) of the Hilbert transform at r =
50T,. Each column corresponds to a filtering around the follow-
ing three frequencies: wy, w;, and w, in the first, second, and
third columns, respectively. The phase is displayed only where
the wave amplitude |9,5| is larger than 15% of the maximum.
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FIG. 6 (color online).
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Snapshots of the vertical density gradient field for + = 107, (a), 207, (b), 50T (c), and 907, (d) for a larger

forcing amplitude @ = 5 mm. Note that the shade scale (color scale online) is the same in all panels.

In a uniformly stratified infinite wave guide of depth H, the
injection of energy (1) generates a horizontally propagat-
ing first mode wave which can be represented as a sum of
two oblique waves with opposite vertical wave numbers,
which parameters are given in the first line of Table I.
The data of wave vectors involved in the triadic resonance
show that the combination of the wave attractor with PSI
provides an extremely efficient transfer from large to small
length scales, namely from 12 to 290 m~! in wave num-
bers: the length of the secondary waves is roughly 25 times
shorter than the scale at which the energy is injected into
the system. Note that the global Reynolds number in the
experiment is Re = awoH /v =~ 500, where v is the kine-
matic viscosity. In natural systems characterized by much
larger values of the Reynolds number, we can expect an
even larger difference between the length scales of input
perturbation and secondary waves, which attests the quite
dramatic energy transfer at play here [18].

This efficient energy transfer to short length scales
occurs despite the rather small amplitude of the initial
perturbation: indeed, the nondimensional value a/H =
0.008 leads already to a significant degradation of the
wave attractor at large time of observation. It is, therefore,
important to stress that these experimental results are in
contrast with numerical results [6] which successfully
reproduced experiments of [7]. However, in Ref. [6], at
large input perturbation (an order of magnitude higher
than the one used in the main run of simulations), authors

0.p [kg m™*]
+40
+20

-20
—40

x [cm]

x [cm]

FIG. 7 (color online). Left panel presents the prediction of a
wave-ray billiard when wo/N = 0.69 and a = 30°. Right panel
shows the snapshot of the vertical density gradient field for
t = 30Ty, wy/N =0.69 *+0.01, and a = 0.25 cm in which
PSI is visible.

have reported only weakly nonlinear effects through
wave components excited at multiples of the forcing fre-
quency, i.e., at 2w, and 3w,. No fingerprints of PSI were
mentioned. A time frequency spectrum and a Hilbert trans-
form analysis (not already popularized [24]), would have
been necessary to unambiguously clarify this. They were
not provided.

As the amplitude of oscillation increases, the transfer of
energy to short spatial scales intensifies. Figure 6 shows the
evolution of the wave field at a/H = 0.015 for a larger
amplitude ¢ = 5 mm with the same experimental condi-
tions and geometry depicted in Fig. 1. It can be seen that
the instability sets in very quickly so that, finally, one can
hardly distinguish an attractor in the wave field which
consists of disintegrated patches and layers. For a different
pattern of the attractor and high enough amplitude, PSI was
also observed and the mechanism is unchanged as empha-
sized by Fig. 7.

Interestingly, ‘““patchiness’ of internal wave beams has
been reported in some oceanographic observations [25].
The experimental results at the laboratory scale presented
in this Letter reproduce this effect, which hinders the
observation of the attractor in real oceanographic condi-
tions. In absence of the sloping wall, no PSI was reported
for similar frequency and amplitude parameters [18].
Consequently, the present experimental arrangement is a
“mixing box” since it allows very efficient destabilization
of the internal wave field while using relatively low ampli-
tudes of oscillation of the generator.

Conclusions.—Previous theoretical, numerical, and ex-
perimental literature on wave attractors is almost entirely
focused on geometrical issues and linear mechanisms. In
the present Letter, we consider for the first time the ulti-
mate instability of wave attractors. We use a new method of
generation which allows an efficient injection of energy
into internal-wave attractors. Attractors are created in a
uniformly stratified fluid in a quiescent test tank with
classic trapezoidal geometry by standing-wave-type mo-
tion of a vertical boundary.

We show that the energy injected into the system by
the generator nicely focused on the wave attractor. As the
amount of energy is increased (above a = 0.2 cm), the
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attractor is destroyed by PSI starting in the most energetic
branch of the attractor and gradually eroding its structure.
This two-step process provides an efficient energy transfer
from the global scale associated to the size of the fluid
domain to local scales associated with the secondary waves
generated via triadic resonance. Beyond the instability,
the attractor is transformed into a structure consisting of
small-scale wave patches and layers, which hardly bear any
resemblance to the classic attractor pattern coming from
ray tracing or linear theoretical solution for the stream
function. Therefore, even in nearly perfect geometrical
conditions attractors may be very hard or impossible to
observe in natural systems if the injected energy is too
large to allow the existence of a stable attractor. Thus, the
ability of attractors to concentrate wave energy places them
at the origin of a spectacular energy cascade.
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