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We determine the steady-state phases of a driven-dissipative Bose-Hubbard model, describing, e.g., an

array of coherently pumped nonlinear cavities with a finite photon lifetime. Within a mean-field master

equation approach using exact quantum solutions for the one-site problem, we show that the system

exhibits a tunneling-induced transition between monostable and bistable phases. We characterize the

corresponding quantum correlations, highlighting the essential differences with respect to the equilibrium

case. We also find collective excitations with a flat energy-momentum dispersion over the entire Brillouin

zone that trigger modulational instabilities at specific wave vectors.
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In recent years, the interest in the physics of quantum
fluids of light in systems with effective photon-photon
interactions has triggered many exciting investigations
[1]. Some of the most remarkable features of quantum
fluids, such as superfluid propagation [2,3] or generation
of topological excitations [4–7], have been observed in
experiments with solid-state microcavities. With the
dramatic experimental advances in solid-state cavity
and circuit quantum electrodynamics (QED), there is a
considerable amount of interest growing in the physics of
controlled arrays of nonlinear cavity resonators, which
can be now explored in state-of-art systems [8,9]. This
opens the way to the implementation of nonequilibrium
lattice models of interacting bosons, particularly when
effective on-site photon-photon interactions are large
enough to enter the strongly correlated regime [10–13].
In these kinds of systems, it is possible to realize the
celebrated Bose-Hubbard model [14] for photons or
polaritons. Since the first theoretical proposal for imple-
menting this model in optical systems [15–17], early
works have been focused on phenomena close to the
equilibrium Mott insulator-Superfluid quantum phase
transition [18,19]. Recently, the physics of strongly non-
equilibrium effects has been explored, particularly in the
interesting driven-dissipative regime where the cavity
resonators are excited by a coherent pump which com-
petes with the cavity dissipation processes [20–24]. In
such nonequilibrium conditions, these open systems are
driven into steady-state phases whose collective excita-
tions can be extremely different from the equilibrium
case. In spite of the recent theoretical progress, the
physics of the 2D model in the thermodynamical limit
needs to be explored, in particular its nonequilibrium
phase diagram.

In this Letter, we present comprehensive results for
the steady-state phases and excitations of the driven-
dissipative Bose-Hubbard model in the case of

homogeneous coherent pumping. The steady-state den-
sity matrix and expectation values of the relevant
observables have been calculated with an efficient
mean-field approach, based on exact analytical quantum
optical solutions of the single-cavity problem. A rich
diagram is shown with multiple steady-state phases,
whose stability and complex energy excitation spectrum
have been studied through a linearization of the
Lindblad master equation around the stationary solu-
tions. We unveil the existence of a purely imaginary
excitation branch which can trigger modulational insta-
bilities at specific wave vectors.
We consider a driven-dissipative Bose-Hubbard model

under homogeneous coherent pumping describing a bidi-
mensional square lattice of cavity resonators. In a frame
rotating at the pump frequency !p, the system is described

by the following Hamiltonian [1]:

H ¼ � J

z

X
hi;ji

byi bj �
XN

i

�!byi bi þ
U

2
byi b

y
i bibi

þ Fbyi þ F�bi; (1)

where byi creates a boson on site i, J > 0 is the tunneling
strength, and z ¼ 4 is the coordination number. hi; ji indi-
cates that tunneling is possible only between first neigh-
bors. U > 0 represents the effective on-site repulsion, F is
the amplitude of the incident laser field, and�!¼!p�!c

is the frequency detuning of the pump with respect to the
cavity mode. The dynamics of the many-body density
matrix �ðtÞ is described in terms of the Lindblad master
equation:

i@t� ¼ ½H;�� þ i�

2

XN

i

2bi�b
y
i � byi bi�� �byi bi; (2)
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where � is the dissipation rate. While for equilibrium
quantum gases, the chemical potential � is a key quantity,
in this nonequilibrium model the steady-state phases
depend instead on the pump parameters F and �!, which
compete with �. It is worth pointing out that this is a model
which well describes a lattice of cavities whose extracavity
environment is the electromagnetic vacuum (apart from the
applied driving field).

Given the success of mean-field theories in the inves-

tigation of the equilibrium Bose-Hubbard physics, it is a

legitimate starting point for the study of its nonequilibrium

version. The mean-field approximation is obtained by

replacing byi bj with hbyi ibj þ hbjibyi in the many-body

Hamiltonian. The initial problem is then reduced to a

single-site Hamiltonian describing an isolated cavity with

effective pumping term F� Jhbi:

Hmf ¼ ��!bybþU

2
bybybbþ ðF� JhbiÞby

þ ðF� � Jhbi�Þb; (3)

where the value of hbi has to be determined self-

consistently. The problem of a single cavity has been

studied by Drummond and Walls [25], who obtained

analytical expressions for the bosonic coherence hbi and
the photon distribution functions via a generalized P

representation for the density matrix. By replacing F

with F� Jhbi in these exact expressions we find the self-

consistent formula

hbi ¼ ðF� JhbiÞ
�!þ i�=2

F
�
1þ c; c�; 8

�����F�Jhbi
U

�����2
�

F
�
c; c�; 8

�����F�Jhbi
U

�����2
� (4)

for the bosonic coherence. The mean photon density and

the other diagonal correlation functions can then be easily

extracted from the general expression:

hðbyÞjðbÞji ¼
��������
2ðF� JhbiÞ

U

��������
2j �ðcÞ�ðc�Þ
�ðcþ jÞ�ðc� þ jÞ

�F ðjþ c; jþ c�; 8jF=Uj2Þ
F ðc; c�; 8jF=Uj2Þ ; (5)

with c ¼ 2ð��!� i�=2Þ=U and the hypergeometric

function F ðc;d;zÞ¼P1
n ½�ðcÞ�ðdÞ=�ðcþnÞ�ðdþnÞ��

ðzn=n!Þ, � being the gamma special function.
All the properties of the steady states are therefore

determined by the self-consistent solutions of Eq. (4)
which we have calculated numerically. Since the number
of particles is not conserved in our system, the physics
differs radically from what is observed at equilibrium,
even for isolated cavities (J ¼ 0). In particular, an

incompressible Mott-insulating phase cannot exist.
Instead, due to the presence of the tunneling term J,
multiple solutions appear in certain region of parameters’
space. We investigated their stability through a lineariza-
tion of the Lindblad master equation around each steady-
state solution as described later in the Letter. In Fig. 1, we
present a diagram showing the number of stable steady-
state solutions as a function of the tunneling and the on-site
interaction in units of the detuning �!> 0 and for a
representative set of parameters (see caption). The value
of the interaction strength U=� varies from 0 to 30,
which is a range accessible to recent circuit QED
experiments (see section IX.F of Ref. [1]). We see in
Fig. 1 that there are regions with 1 or 2 stable solutions,
but also regions with no stable homogeneous solution
[shown in red (labeled ‘‘0’’)]. Notice however that, within
our mean field approach, we have direct access only to
spatially uniform solutions, where all the cavity sites are
equivalent.
Interestingly, we find that the bistability induced by the

coupling between the cavities also appears when the pump
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FIG. 1 (color online). Top: Sketch of a square photonic lattice
made of nonlinear cavities coupled by tunneling. The system is
pumped coherently by a homogeneous laser field at normal
incidence. Bottom: Number of mean-field solutions and
their stability plotted as a function of J=�! and U=�!, for
F=�! ¼ 0:4; �=�! ¼ 0:2, and �!> 0. Light blue (top-left
and bottom-right part labeled with a ‘‘1’’): monostable region,
only one solution to Eq. (4). Dark blue part (labeled ‘‘2’’):
bistable region, two solutions to Eq. (4). Yellow part (central
region labeled with ‘‘1’’) has only one stable phase out of
two existing solutions. Red part (label ‘‘0’’): only one solution,
which is unstable. A, A0, B, and B0 are points on the edge of
the unstable zone whose excitation spectrum is presented in
Figs. 4 and 5.

PRL 110, 233601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
7 JUNE 2013

233601-2



frequency is red detuned with respect to the cavity mode
(not shown), in sharp contrast with the case of an isolated
cavity. We see in Fig. 1 that the boundary between mono-

stable and bistable phases is reminiscent of the lobe struc-

ture characteristic of the equilibrium model. But despite

similar shapes, equilibrium and nonequilibrium lobes are

very different in nature. In particular, as shown in Fig. 2,

the mean photon density is not constant within the lobes.

Moreover, in the bistable region the two phases have very

different photon density: one of them, hereafter called

the low-density phase, has hbybi � 10�2 (left panel of

Fig. 2) whereas in the high-density phase hbybi * 1 (right

panel of Fig. 2).

To gain further insight, let us consider the quantum

correlations of the considered phases. The on-site second

order correlation function g2ð0Þ ¼ hbybybbi=hbybi2 is

plotted in Fig. 3. It is important to keep in mind that at

equilibrium the value of g2ð0Þ inside the lobes is equal to

1� 1=n for a pure Mott insulator state where n is the

constant integer number of particles on each site, whereas

it goes to 1 when J � U in the thermodynamical limit.

The left panel of Fig. 3 shows that the light is antibunched

inside the lobes. The lowest value, 0.6, is observed for the

upper lobe, reminiscent of the n ¼ 2 lobe at equilibrium.

But the analogy with equilibrium stops here: in the low

density phase, for U=�!< 3 the emitted light shows

strong bunching, that is g2ð0Þ � 1 [26]. Furthermore, for

the same value of the density, the system could exhibit

both bunching and antibunching. For example, in the

low-density phase, for U=�! ¼ 2 and J=�! ¼ 3:25, the

density is 0.026 and g2ð0Þ ¼ 13, while for U=�! ¼ 4:5

and J=�! ¼ 1:6, the density remains the same but

g2ð0Þ ¼ 0:64.

Let us now investigate the collective excitations and the

dynamical stability of the two phases. This can be done by

linearizing the master equation in Fock space for small

fluctuations around the steady-state assuming a Gutzwiller

factorization of the density matrix:

� ¼ O
i

ð ��þ ��iÞ; (6)

where �� is the steady-state density matrix whose represen-

tation in Fock space can be extracted from Eq. (5) [27]. The

coefficients of ��i then obey linear differential equations,

which are coupled in real space but decoupled in reciprocal

space due to the translational symmetry. For each k vector

in the Brillouin zone, we have:

i@t��
k ¼ Lk:��

k; (7)

where ��k
n;m ¼ ð1= ffiffiffiffi

N
p ÞPN

i¼1 e
�ik�ri��i

n;m and Lk is the

matrix associated to the linearization. The energy spectrum
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FIG. 3 (color online). Second-order correlation function g2ð0Þ
as a function of J=�! and U=�!. Same parameters as in Fig. 2.
Left panel for the low-density phase. Right panel for the high-
density phase.
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FIG. 2 (color online). Photon occupation number as a function
of J=�! and U=�! for F=�! ¼ 0:4 and �=�! ¼ 0:2. Left
panel: results for the boson occupation number in the low-
density phase. Right panel: the same quantity but for the high-
density phase. For the sake of clarity, the maximal value of
the color scale in the high-density phase has been set to 3, but the
density is higher than 10 at high J and low U. Notice that the
monostable region is the same for both panels.
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FIG. 4 (color online). Energy-momentum dispersion of ele-
mentary excitations for points A (upper panel) and A0 (lower
panel), indicated in Fig. 1. Real and imaginary part of the low-
energy branches (in units of �) are plotted vs k. � ¼ ð0; 0Þ,M ¼
ð�=a;�=aÞ, X ¼ ð�=a; 0Þ are special points in the Brillouin
zone of the squared photonic lattice. Thick blue lines depict
branches with a flat real part over the entire Brillouin zone, while
the imaginary part is strongly dispersive with a resonance around
specific wave vectors.
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is given by the eigenvalues ofLk and the system is dynami-

cally stable if all eigenvalues have a negative imaginary part.

Stability studies revealed the onset of modulational instabil-

ities in the low density phase [regions in yellow (labeled ‘‘1’’

at center) and red (labeled ‘‘0’’) in Fig. 1]. Dispersion rela-

tions at the edge of the unstable region (pointsA,A0,B, andB0

in Fig. 1), are plotted on Figs. 4 and 5. Remarkably, the real

part of the unstable branch is zero for every k inside the

Brillouin zone while the imaginary part is strongly

dispersive. The existence of this purely imaginary branch

can be seen analytically in the low-density regime where

there is at most one photon per site so that we can approxi-

mate our description by working in a truncated Hilbert

space. The vector ��k has then only four coefficients,

ð��k
00; ��

k
01; ��

k
11; ��

k
10ÞT andLk is given by:

L k ¼
0 ðA� þ F�Þ þ tk ��

�
10 i� �ðAþ FÞ � tk ��10

Aþ F ��!� tkð ��00 � ��11Þ � i �2 �ðAþ FÞ 0
0 �ðA� þ F�Þ � tk ��

�
10 �i� ðAþ FÞ þ tk ��10

�ðA� þ F�Þ 0 A� þ F� �!þ tkð ��00 � ��11Þ � i �2

0
BBB@

1
CCCA; (8)

where A ¼ �Jhbi is the mean-field parameter, ( ��00, ��10,
��11) the coefficients of the steady-state density matrix,
tk ¼ �ðJ=2Þ½cosðkxaÞ þ cosðkyaÞ� is the term responsible
for the dispersion in a square lattice, and a is the lattice
parameter.

Simple algebra shows that such a 4� 4 matrix always
has a purely imaginary eigenvalue. We have checked nu-
merically that in the low density regime such a truncated
matrix agrees with the results obtained by including the full
linearization matrix. The dispersive nature of purely imagi-
nary branches is a consequence of interactions. Indeed, in
the low-density phase, when J � U, all eigenvalues have
completely flat imaginary parts, while there are only two
(anticonjugate) branches whose dispersive real parts origi-
nate from the bare boson dispersion on a square lattice. The
k dependence ofLk is enclosed in the coefficient tk which
itself is a function of cosðkxaÞ þ cosðkyaÞ. We see in Fig. 4

and Fig. 5 that on the left side of the unstable region,
instabilities arise at k ¼ ð�=a;�=aÞ. On the other edge,
however, the unstable k vectors are smaller and located
well inside the Brillouin zone. The region marked in red
(labeled ‘‘0’’) in Fig. 1 is of particular interest as there is no
stable homogenous solution inside. This shows that an
inhomogeneous density-wave steady state occurs in this
region of the phase diagram.

In summary, we have explored the mean-field phase
diagram of a driven-dissipative Bose-Hubbard model for
a wide range of parameters. In the case of spatially homo-
genous coherent pumping, depending on the values of the

on-site repulsion and tunneling coupling, it is possible to
have bistable or monostable homogeneous solutions with
peculiar quantum correlation properties. A collective exci-
tation mode with a flat dispersion over the entire Brillouin
zone and a dispersive imaginary part can occur, leading to
tunneling-induced instabilities at specific wave vectors and
thus a breaking of the translational invariance. Our results
show that driven-dissipative arrays of cavities can lead to
very rich many-body physics, which is very different from
its equilibrium counterpart.
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[10] A. Imamoglǔ, H. Schmidt, G. Woods, and M. Deutsch,
Phys. Rev. Lett. 79, 1467 (1997).
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