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We study a relativistic plasma containing charged chiral fermions in an external electric field. We show

that with the presence of both vector and axial charge densities, the electric field can induce an axial

current along its direction and thus cause chirality separation. We call it the chiral electric separation

effect (CESE). On a very general basis, we argue that the strength of CESE is proportional to �V�A with

�V and �A the chemical potentials for vector charge and axial charge. We then explicitly calculate this

CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new

gapless wave mode propagating along the electric field. Potential observable effects of CESE in heavy-ion

collisions are also discussed.
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Introduction.—It was discovered and understood a long
time ago that an external electric field, when applied to any
conducting matter, induces a vector current, as described
by Ohm’s law,

jV ¼ �E; (1)

where � is the electric conductivity of the matter, and we
use the convention that the electric current is ejV . In
quantum field theories such as quantum electrodynamics
(QED) and quantum chromodynamics (QCD), one has not
only the vector current j

�
V but also the axial current j

�
A

when there are charged chiral fermions. A very interesting
question is then, in addition to the above conducting vector
current under applied electric field, what are the other
possible current generations in response to externally
applied Maxwell electric and/or magnetic fields.

Recently, the QCD axial anomaly has been found to
induce the following two phenomena in the high-
temperature deconfined phase of QCD, the quark-gluon
plasma (QGP), with the presence of an external magnetic
field: the chiral magnetic effect (CME) and the chiral
separation effect (CSE). The CME is the generation of
vector current and thus the electric charge separation along
the axis of the applied magnetic field in the presence of
nonzero axial charge density arising from fluctuating to-
pological charge [1–5]. With an imbalance between the
densities of left- and right-handed quarks, parametrized by
an axial chemical potential �A, an external magnetic field
induces the vector current jiV ¼ h �c�ic i,

jV ¼ �5�AB; (2)

with chiral conductivity �5 � ðNce=2�
2Þ. A ‘‘comple-

mentary’’ effect also arising from the axial anomaly is
the CSE which predicts the generation of an axial cur-
rent, jiA ¼ h �c�i�5c i and thus separation of axial
charges along the external B field at nonzero vector

charge density (parametrized by its chemical potential
�V) [6,7],

jA ¼ �5�VB: (3)

It should be emphasized, though, the �A (unlike �V)
is not associated with any conserved charge and can only
be treated as an external parameter arising from external
dynamics in the slowly varying limit, e.g., via effective
axion dynamics �A � @�=@t � �QCD; see detailed

discussions in Refs. [2,8]. This approach is justified
for the study in the present Letter as also in previous
studies [1–8].
There is robust evidence for both CME and CSE from

kinetic theory, hydrodynamics, and holographic QCD
models in strong coupling regime as well as in lattice
QCD computations [9–21]. Experimentally, the hot QGP
is created in high-energy heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC). In such collisions, domains of
QGP with nonzero chirality (�A � 0) can arise from to-
pological transitions in QCD, and there are also extremely
strong transient E and B fields [22–26], so the CME and
CSE effects can occur. There have been measurements
of charge asymmetry fluctuations motivated by CME
predictions from the STAR [27] and PHENIX [28]
Collaborations at RHIC, as well as from the ALICE [29]
Collaboration at LHC. The precise meaning of these data is
under investigation (see, e.g., Ref. [30]). It has also been
proposed that the combination of the CME and CSE leads
to a collective excitation in QGP called the chiral magnetic
wave (CMW) [31]. The CMW induces an electric qua-
druple of QGP that can be measured via elliptic flow
splitting between ��=�þ [32], with supportive evidence
from STAR measurements [33].
There is, however, one more possibility that has not been

previously discussed, namely the generation of an axial
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current in the electric field. We find this to occur when the
matter has both nonzero �V and nonzero �A,

jA ¼ �e�V�AE; (4)

which can be called a chiral electric separation effect
(CESE). In this Letter, we will derive this relation and
explicitly compute the CESE conductivity �e in thermal
QED. With this new relation found, one can nicely com-
bine all four effects into the following form:

jV
jA

� �
¼ � �5�A

�e�V�A �5�V

� �
E
B

� �
: (5)

Chiral electric separation effect.—To intuitively under-
stand how the CESE (4) arises, let us consider a conducting
system with chiral fermions. When an electric field is
applied, the positively (negatively) charged fermions will
move parallel (antiparallel) to the E direction and both
contribute to the total vector current as in Eq. (1). If�V>0
then there will be more positive fermions (moving along
E), and further if �A > 0, then there will be more right-
handed fermions than left-handed ones. The end result will
thus be a net flux of right-handed (positive) fermions
moving parallel to E. This picture is most transparent in
the extreme situation, when the system contains only right-
handed fermions (i.e., in the limit of �V ¼ �A > 0), with
both a vector and an axial current concurrently generated
parallel toE. The same conclusion can be made when both
�V and �A are negative. In cases with �V > 0>�A or
�V < 0<�A, one can follow the same argument to see an
axial current generated antiparallel to the E direction.

Different from the CME and CSE, the generation of the
axial current via CESE is not related to axial anomaly, but
rather arises from the same conducting transport respon-
sible for usual conduction in Eq. (1). To demonstrate that,
let us consider the conduction of left-handed fermions jL ¼
�ðT;�L;�RÞE, where �L ¼ �V ��A and �R ¼ �V þ
�A are the left-handed and right-handed chemical poten-
tials, respectively. Due to symmetry, the conducting current
of right-handed fermions must be jR ¼ �ðT;�R;�LÞE.
We focus on the situation when all chemical potentials
are small compared to the temperature T, so that
�ðT;�L; �RÞ � �0ðTÞ þ �0

0ðTÞ�2
L þ �00

0 ðTÞð�2
L þ �2

RÞ,
where the second term represents the chemical potential
correction to the fermion conduction (here, the left-handed
ones) and the last term arises from correction to the screen-
ings (as will be seen in our explicit calculation later). Note
that due to charge conjugation symmetry, there will be no
linear terms of �L;R in the expansion. Now the total vector

current would then be jV ¼jLþjR¼�ðT;�L;�RÞEþ
�ðT;�R;�LÞE�½2�0þð�0

0þ2�00
0 Þð�2

Vþ�2
AÞ�E, while

the axial current would then be jA ¼ jR � jL �
4�0

0�V�AE. We therefore see that its origin is not from

the axial anomaly but from the conduction in a chiral many-
body environment, and the CESE is different in nature
from recently discussed axial current generation via

anomaly in certain superfluid systems [34–36]. Note also
that the relevant time scale, e.g., �1=ðe�Þ should be long
enough to justify treating �A as a slowly varying external
parameter [2,8].
Computation of the CESE conductivity.—We will now

compute explicitly the leading-log order CESE conductiv-
ity for thermal QED plasma using the Kubo formula under
the condition �V , �A � T. The extension of this compu-
tation to QCD is straightforward and will be presented
elsewhere.
Let us denote �e ¼ �e�V�A. Starting with the retarded

vector-vector and vector-axial correlatorsGRij
VV andGRij

AV (as

diagrammatically shown in Fig. 1), the � and �e are given
via the Kubo formulas as

� ¼ X3
i¼1

lim
!!0

lim
k!0

i

3!
GRii

VVð!; kÞ; (6)

�e ¼
X3
i¼1

lim
!!0

lim
k!0

i

3!
GRii

AVð!; kÞ: (7)

In Fig. 1, the shaded circle represents an effective vertex
(see Fig. 2). This effective vertex represents a resummation
of a set of ladder diagrams which contribute to the same
order, owing to the pinching singularity when !, k ! 0
[37]. The dotted line in Fig. 2 represents the hard thermal
loop (HTL) resummed propagator. All other kinds of
diagrams (e.g., the box diagrams which are vanishing
identically due to Furry theorem at zero chemical poten-
tials but finite at nonzero chemical potentials) are sub-
leading-log order.
One can write down the retarded correlators explicitly,

Gij
VV ¼ �e

Z
P
Tr½�iðPþ K;PÞSðPÞ�jSðPþ KÞ�; (8)

Gij
AV ¼ �e

Z
P
Tr½�iðPþ K;PÞSðPÞ�j�5SðPþ KÞ�: (9)

The effective vertex in the above is given by Fig. 2,

��ðPþ K;PÞ ¼ �� þ e2
Z
Q
��SðPþ K þQÞ

� ��ðPþ K þQ;PþQÞ
� SðPþQÞ���D��ðQÞ: (10)

The �D��ðQÞ is the HTL propagator for the photon, while

SðPÞ is the electron propagator at nonzero �V and �A,

FIG. 1. The Feynman diagrams for retarded correlators GR
VV

(left) and GR
AV (right).
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SðPÞ ¼ �1

�0ðp0 þ�V þ�A�5Þ � � 	 p� ����ðPÞ

¼ X
s¼


�s

�� 	 ðPs � �sÞ
ðPs � �sÞ2

; (11)

where �
 ¼ ð1
 �5Þ=2 is the chirality projection, P�

 ¼

ðP0
;pÞ with P0
 ¼ p0 þ�
 and �
 ¼ �V 
�A.
Substituting all these into the Kubo formulas and following
essentially the steps as in Refs. [38,39], we finally obtain

� ¼ X
s;a¼


�sa; (12)

�e ¼
X

s;a¼

s�sa; (13)

�sa ¼ �a
e

3

Z d3p

ð2�Þ3 n
0
Fðp� a�sÞ�s

aðpÞ; (14)

with nFðxÞ ¼ 1=½expðx=TÞ þ 1� and �s
aðpÞ ¼ Ds

aðpÞ=�s
a.

The Ds
a is defined through 2piDsþðpÞ ¼ �usðpÞ�iþ

ðpÞusðpÞ, 2piDs�ðpÞ ¼ �v�sð�pÞ�i�ðpÞv�sð�pÞ, and
�s
 ¼ �2Im�R
sðP0

s ¼ 
Ep;pÞ is the decay width for

fermions (þ) and antifermions (� ) of chirality s.
The vertex integral equation (10) can be finally recast

into a differential equation for �s
aðpÞ,

1 ¼ 2�m2
s lnð1=eÞ
p

½nBðpÞ þ nFð�sÞ��s
aðpÞ

þ �Tm2
D lnð1=eÞ
p2

�
�s
aðpÞ � p2

2

d2�s
aðpÞ

dp2

�
�
1� p

2T
ð1� 2nF½p� a�s�Þ

�
p
d�s

aðpÞ
dp

�
; (15)

where nBðxÞ ¼ 1=½expðx=TÞ � 1� is the Bose-Einstein
function, � ¼ e2=4�, m2

s ¼ ðe2=8ÞðT2 þ ð�2
s=�

2Þ is the
effective mass of electrons, and m2

D ¼ ðe2=6ÞPs¼
ðT2 þ
ð3�2

s=�
2Þ is the Debye screening mass of photons. We note

that the leading-order terms in the effective vertex and
those in the fermion decay width cancel each other,
and as a result the leading-log results for conductivities

are actually at the order Ôð1=½e3 lnð1=eÞ�Þ rather than

Ôð1=½e lnð1=eÞ�Þ as expected from �sa � e=�s
a.

Following Ref. [40], we solve this differential equation
numerically by using the variational method. This varia-
tional scheme converges very fast, and at very high preci-

sion we obtain (up to Ôð�s=TÞ2 order)

�sa � T

e3 lnð1=eÞ
�
3:9238þ 4:598 67a

�s

T
þ 2:562 37

�2
s

T2

� 0:622 24
�2

V þ�2
A

T2

�
; (16)

and thus

� � T

e3 lnð1=eÞ
�
15:6952þ 7:760 52

�2
V þ�2

A

T2

�
; (17)

�e � 20:499
�V�A

T2

T

e3 lnð1=eÞ : (18)

In the limit �s ! 0, our result for � is in agreement with
� � 15:6964 T

e3 lnð1=eÞ obtained in Ref. [40].

Coupled evolution of the two currents.—As seen in
Eq. (5), with the presence of external electromagnetic
fields, the vector and axial currents mutually induce each
other and get entangled in a nontrivial way. It is of great
interest to understand the coupled evolution of small fluc-
tuations of the two currents. A very good example is the
aforementioned CMW [31,32] in which the fluctuations of
vector and axial currents are coupled together by external
B field to form a propagating wave. Now the new CESE
effect introduces nonlinearity (through the �V�A term)
and makes the problem more nontrivial.
Let us consider a thermalQEDorQCDplasma in the static

and homogeneous externalE,B fields and study the coupled
evolution of the small fluctuations in vector and axial charge
densities. The presence of vector density and current will
induce additional electromagnetic fields so thatEtot ¼ Eþ
	E and Btot ¼ Bþ 	B with 	E / ej0V and 	B / ejV . As
in the case of CMW, one can first replace the chemical
potentials in Eq. (5) with the corresponding charge densities,
�V;A ¼ �V;Aj

0
V;A, where the �V;A are the susceptibilities

defined as �V;A � @�V;A=@j
0
V;A. These relations are valid

as long as the chemical potentials are small compared with
temperature T. Then, combining Eq. (5) with the currents’
continuity equations @tj

0
V;A þr 	 jV;A ¼ 0 and Maxwell’s

equation r 	Etot ¼ ej0V and r 	 Btot ¼ 0, one can obtain

@tj
0
Vþe�0j

0
Vþ�5�AðB 	rÞj0Aþ2�2�

2
Vj

0
VðE 	rÞj0V

þ2�2�
2
Aj

0
AðE 	rÞj0A¼0;

@tj
0
Aþ�5�VðB 	rÞj0Vþ�e�V�Aj

0
VðE 	rÞj0A

þ�e�V�Aj
0
AðE 	rÞj0V ¼0; (19)

where we have introduced �0 and �2, defined through the
small chemical potential expansion of �, � ¼ �0 þ
�2ð�2

V þ�2
AÞ. In arriving at the above, we have made the

following approximations: first, we keep only terms up to

Ôðj2V;AÞ order (such that terms like j0	E 	 rj0 � Ôðj3Þ and
�2�

2j0V are dropped); second, we assume external fields are
extremely strong such that the magnetic field feedback terms

��5�	B 	 rj0 � �5�eðj@jÞ are negligible to other Ôðj2Þ

FIG. 2. Integral equation for the effective vertex ��.
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terms ��e�
2Eðj@jÞ and ��2�

2Eðj@jÞ. We will next lin-
earize the above equations by considering fluctuations on top
of small uniform background vector and axial densities
nV and nA, so that j0V;A ¼ nV;A þ 	j0V;A with 	j0V;A � nV;A
being fluctuations. Note that nV;A themselves must still be

small (compared toT3) to ensure the linear relations between
j0V;A and�V;A. Strictly speaking, only a uniform axial density

nA is a static solution of the above equations, while a uniform
vector density nV suffers from the damping term e�0j

0
V and

is only approximately static on time scale shorter compared
with 1=e�0. Keeping only linear terms in 	j0V;A; we obtain

@t	j
0
V þ e�0	j

0
V þ �5�AðB 	 rÞ	j0A

þ 2�2�
2
VnVðE 	 rÞ	j0V þ 2�2�

2
AnAðE 	 rÞ	j0A ¼ 0;

@t	j
0
A þ �5�VðB 	 rÞ	j0V þ �e�V�AnVðE 	 rÞ	j0A
þ �e�V�AnAðE 	 rÞ	j0V ¼ 0: (20)

In order to find possible normal modes, we make the

Fourier transformation of these equations. Using 	j0V;A ¼R
!;k CV;Að!; kÞe�ið!t�k	xÞ, we obtain from Eqs. (20) the

following relations:

!CV þ ie�0CV � �5�AðB 	 kÞCA

� 2�2�
2
VnVðE 	 kÞCV � 2�2�

2
AnAðE 	 kÞCA ¼ 0;

!CA � �5�VðB 	 kÞCV � �e�V�AnAðE 	 kÞCV

� �e�V�AnVðE 	 kÞCA ¼ 0: (21)

Without loss of generality, we can always assume B is
along the z axis, i.e., B ¼ Bẑ while E ¼ Eê. The disper-
sion relation obtained from Eq. (21) can be expressed as

! ¼ � 1

2
½ie�0 � vþðê 	 kÞ�


 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ie�0 � v�ðê 	 kÞ�2 þ 4A�ðkÞ

q
; (22)

where v
 ¼ vv 
 va with vv ¼ 2�2�
2
VnVE and va ¼

�e�V�AnVE, and

A�ðkÞ ¼ ½�5�ABðẑ 	 kÞ þ 2�2�
2
AnAEðê 	 kÞ�

� ½�5�VBðẑ 	 kÞ þ �e�V�AnAEðê 	 kÞ�: (23)

To manifest the physical meaning of the solutions in (22),
let us consider the following two special cases:

(1) The case with only B ¼ Bẑ and E ¼ 0. Equation

(22) reduces to ! ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�kzÞ2 � ðe�0=2Þ2

q
� iðe�0=2Þ

with speed v� ¼ �5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�V�A

p
B. When v�kz � e�0=2, we

get two well-defined propagating modes ! � 
v�kz �
iðe�0=2Þ. These are generalized CMWs, which reduce to
the CMW in Ref. [31] when �0 ¼ 0 and �V ¼ �A. When
v�kz � e�0=2, the two modes become purely damped.

(2) The case with only E ¼ Eẑ and B ¼ 0. First, we
consider a background without vector density, i.e., nV ¼ 0.
In this case, we find two modes from (22),

! ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvekzÞ2 � ðe�0=2Þ2

q
� iðe�0=2Þ; (24)

with ve ¼ �AnA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2�e�V�A

p
E. Similar to the CMWs,

when vekz � e�0=2 there are two well-defined modes
! � 
vekz � iðe�0=2Þ from CESE that propagate along
E field and can be called the chiral electric waves (CEWs).
They become damped when vekz � e�0=2.
Second, if the background contains no axial density, i.e.,

nA ¼ 0, then we see that the vector and axial modes
become decoupled, and Eq. (22) leads to

!VðkÞ ¼ vvkz � iðe�0Þ; !AðkÞ ¼ vakz: (25)

The first solution !VðkÞ represents a ‘‘vector density
wave’’ (VDW) with speed vv ¼ 2�2�

2
VnVE that transports

vector charges along E field but will be damped on a time
scale �1=ðe�0Þ. The second solution !AðkÞ is a new
mode arising from CESE and represents a propagating
‘‘axial density wave’’ (ADW) along E with speed va ¼
�e�V�AnVE and without damping.
Summary and discussions.—In summary, we have found

a new mechanism for the generation of axial current by
external electric field in a conducting matter with nonzero
vector and axial charge densities, which we call the chiral
electric separation effect. We have computed the CESE
conductivity coefficient in a QED plasma and also studied
possible collective modes arising from it.
We end by discussing possible observable effects in-

duced by CESE in heavy ion collisions. In the created
hot QGP there can be both vector and axial charge densities
from fluctuations and topological transitions. There are
also very strong electric fields during the early moments
of heavy ion collisions [22–24,26]. One particularly inter-
esting situation is in the Cuþ Au collisions (see Fig. 3),
where due to the asymmetric nuclei (rather than from
fluctuations) there will be a strong E field directing from
the Au nucleus to the Cu nucleus [41]. In this case the E
field will lead to both an in-plane charge separation via (1)
and an in-plane chirality separation via (4). The resulting
in-plane axial dipole will then further separate charges via
CME along the magnetic field in the out-of-plane direction

FIG. 3 (color online). A schematic illustration for CESE-
induced net charge distribution and correlation patterns in
Cuþ Au collision.
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and cause an approximate quadrupole at certain angle �q

in between in- and out-of-plane. We therefore expect a
highly nontrivial charge azimuthal distribution pattern
	N
ð
Þ � d cosð
Þ þ q cosð2
� 2�qÞ with the dipole

term due to usual conductivity and the quadrupole term
due to CESE and CME effects. This pattern may possibly
be measured either via charged pair correlations or the
charged multiple analysis [24]. Quantitative predictions
will require proper modeling of the QGP and solving
Eq. (20), which will be reported in a future work.
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