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We present a stochastic model for amplifying, diffusive media such as, for instance, random lasers.

Starting from a simple random-walk model, we derive a stochastic partial differential equation for the

energy field which contains a multiplicative random-advection term yielding intermittency and power-law

distributions of the field itself. A dimensional analysis indicates that such features are more likely to be

observed for small enough samples and in lower spatial dimensions.
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Wave transport in disordered media can be described as
a multiple scattering process in which waves are randomly
scattered by a large number of separate elements [1]. To the
first approximation this gives rise to a diffusion process. A
particularly interesting situation arises when gain is added
to a randommaterial. In optics this is realized, for instance,
in the form of a suspension of microparticles with added
laser dye or by grinding a laser crystal. If the total gain
becomes larger than the losses, fluctuations grow and these
systems exhibit a lasing threshold [2], yielding the so-
called random laser (see, e.g., Refs. [3,4] and the referen-
ces therein). The complexity generated by the interplay
between gain and disorder leads to intriguing connections
with other fundamental problems such as Anderson local-
ization [5] or the physics of glasses [6]. In addition to their
fundamental interest, random lasers are likely to have a
technological impact as low-cost light sources.

Similar situations occur in other branches of physics
such as neutron diffusion in fissile materials or stochastic
wave growth [7] and acceleration of plasma particles [8].
As is known, the competition between growth and propa-
gation or diffusion is also a basic mechanism of population
dynamics and theoretical ecology [9].

Diffusive random lasing has been observed experimen-
tally in various active random media, including powders,
laser dye suspensions, and organic systems [10–12].
Theoretical descriptions often rely on the diffusive appro-
ximation either by reaction-diffusion type of equations
[2,13] or, on a more microscopic level, by the master-
equation approach [14]. Monte Carlo simulations of course
play an important role [15,16].

One of the salient experimental features of random laser
emission is its large statistical variability [17]. Indeed,
already within the diffusive approximation, the addition
of gain (and saturation) naturally generates fat-tailed dis-
tributions [18] that stem from rare long light paths [16].
This mechanism is of pure statistical origin and does
not require localization or interference [17]. It was also
proposed that such systems can exhibit Lévy-type statistics
in the distribution of intensities [18–20], and crossovers
among different statistics have been predicted [21].

Remarkably, those predictions were very recently con-
firmed experimentally [22] (see also Ref. [23]).
In this work we first present a simple stochastic model

that can be analytically solved and that yields large statis-
tical fluctuations. From it, we derive an equation for the
energy field which contains a stochastic multiplicative
term whose strength controls such anomalous fluctuations.
The magnitude of this term introduces another scale in the
problem which thus provides a criterion for the observ-
ability of such intermittency in the field distribution.
We choose to describe isotropic diffusion of light in

terms of an ensemble of independent random walkers
each carrying a given energy (number of photons). This
may be visualized as an ensemble of ‘‘beams’’ propagating
independently throughout the sample, each interacting
with an underlying atomic population providing a gain
mechanism via stimulated emission. This procedure of
attaching an energy to a random walk of photons is a
common practice in Monte Carlo simulations of absorption
in complex materials such as, e.g., tissues [24]. It has also
been employed previously for random lasers [16,21], under
the implicit assumption that all the photons generated by
amplification are diffused in the same direction at each
scattering event.
Let us denote by x and E the walker’s position and

energy. We discuss the one-dimensional case in which
the walker resides on a finite interval, 0 � x � L. The
dynamics is formulated as follows. A new walker is gen-
erated at a random position by a spontaneous emission
event with a rate � and initial energy E ¼ ". In terms of
the underlying active media, � denotes the spontaneous
emission rate of the single atom. The walker position x
changes to x� a according to a standard random-walk rule
on a lattice with spacing a. At the same time, the walker
energy E may increase by one unit due to the process
of stimulated emission, E ! Eþ ", with a rate �ðEÞ.
The simplest choice would be �ðEÞ ¼ �E or, to mimic
saturation effects, we may consider a gain of the form
�ðEÞ ¼ �E=ð1þ E=EsÞ.
The probability PiðnÞ for the walker to be at x ¼ ia

having an energy E ¼ n" evolves according to a master
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equation that can be solved by standard methods [25].
Here, to simplify further, we work directly in the contin-
uum limit and treat x and E as continuous variables, obey-
ing the Langevin equations [25]

_x ¼ ffiffiffiffiffiffiffi
2D

p
�; _E ¼ �ðEÞ þ ffiffiffiffiffiffiffiffiffiffi

�ðEÞp
�; (1)

where �, � are �-correlated Gaussian variables with zero
average and h�2i ¼ h�2i ¼ 1 (from now on h� � �i denotes
an average over realizations of the process). To keep things
as simple as possible, bulk absorption or the possibility that
diffusion is affected by the energy is neglected from
scratch but can be easily included.

To demonstrate that this dynamics naturally generate
power-law distributions of energies, we solve the associ-
ated Fokker-Planck equation [Itô interpretation of Eq. (1)]

_P ¼ D
@2P

@x2
� @

@E

�
�P� 1

2

@�P

@E

�
; (2)

where Pðx; E; tÞ is the probability of finding a walker with
energy E at x. Four boundary conditions are necessary on
the contour of the domain ½0; L� � ½1;1Þ. To account for
complete absorption at the boundaries we let Pð0; E; tÞ ¼
PðL; E; tÞ ¼ 0. Moreover, Pðx; 1; tÞ � fðx; tÞ is determined
as a solution of

_f ¼ Df00 � �fþ �; (3)

where we approximated �ð1Þ � �. This condition may
appear somehow unusual and is justified as follows:
walkers with unit energy increase at rate � and are
free to diffuse without increasing their energy. Their num-
ber diminishes by a term ��f because they gain energy
by amplification. Note that Eq. (3) can be derived
exactly from the underlying master equation for the dis-
crete variables [25].

The stationary solution of Eq. (2) can be found by
separation of variables Pðx; EÞ ¼ QðxÞWðEÞ, yielding
Q	 sinðkxÞ with k ¼ m�=L (m integer) being the sepa-
ration constant (the wave number) that somehow couples
diffusion and gain. The physical origin of such a coupling
is that E depends on the actual path length spent by the
walker within the sample: longer paths acquire a larger
energy and the high-E statistics ultimately depend on
this mechanism. The equations for W may be integrated
exactly, but for our purposes it suffices to solve an appro-
ximated form where the energy-diffusion term in Eq. (2)
is neglected,W � exp½�Dk2

R
E ��1ðE0ÞdE0�=�ðEÞ. Thus,

for the linear gain W has a power-law tail while for the
saturating case

WðEÞ / expð�Dk2E=�EsÞ
E1þDk2=�

(4)

(we have also assumed Es 
 E 
 1). The general solu-
tion is a sum over the allowed k’s. As a further approxi-
mation, we consider only the first Fourier mode k ¼ �=L.
This is mathematically justified noting that Q is fixed by

the stationary solution of Eq. (3) which for fð0Þ¼fðLÞ¼0

is (� � ffiffiffiffiffiffiffiffiffiffi
�=D

p
)

fðxÞ ¼ 1þ sinhð�ðx� LÞÞ� sinhð�xÞ
sinhð�LÞ : (5)

In the critical region (to be defined below), �	 �=L so
that f (and thus Q) is indeed very close to the shape of the
first Fourier mode itself. The result is that the distribution
of energies displays a parameter-dependent power law

Pðx; EÞ / sin

�
�x

L

�
expð��E=EsÞ

E1þ�
; (6)

where �c � Dð�=LÞ2 and � � �c=�, which is exponen-
tially cutoff at E	 Es. The origin of the power law (6) is
traced back to very long paths which, although exponen-
tially rare, acquire an exponentially large energy while
diffusing throughout the sample [18,21]. Note that
� ¼ �c correspond to the case of a Cauchy-like tail
� ¼ 1, Pðx; EÞ / E�2, yielding a diverging average value
of the energy for Es ! 1. It is thus natural to identify this
as the ‘‘laser threshold’’ for the model: it will be shown
below that this coincides with the usual criterion of gain
overcoming the losses.
Thus far we have described the system in terms of a

single walker property. Consider a population of M
walkers, and denote by xi and Ei their position and ener-
gies, each obeying the equation of motion (1). We thus
introduce the energy density field

�ðx; tÞ ¼ XMðtÞ

i

Ei�ðx� xiðtÞÞ: (7)

The number MðtÞ fluctuates in time due to the fact that
walkers are created (at a rate �L) and absorbed at the
boundaries [at a rate Dð�=LÞ2M], so that M	 �L3=D.
For �	 �c 	D=L2 (which is the regime of interest here)
M=L	 1; i.e., there are a few walkers per unit length and
fluctuations must be very relevant there. The problem can
thus be recast [26] in terms of a Langevin equation
for � [25]:

@�

@t
¼ D

@2�

@x2
þ �ð�Þ þ @

@x
ðv�Þ þ s: (8)

As done above, we neglected the
ffiffiffiffi
�

p
term in Eq. (1), which

also avoids the usual interpretation problems of the white-
noise process. The same � as in the single-walker case is
used, which is justified since the walkers are noninteract-
ing. The additive, spatially uncorrelated, spontaneous
emission noise sðx; tÞ is a Poissonian process whereby �
is increased by " at random times, whose separation 	 is
distributed as � expð��	Þ. The process vðx; tÞ is Gaussian
distributed with

hvðx; tÞvðx0; t0Þi ¼ D‘�ðx� x0Þ�ðt� t0Þ; (9)

where the spatial scale ‘ is introduced for dimensional
consistency. We further assume that this noise has a finite
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correlation in space, described by the smooth function
�ðxÞ, an assumption often done in other contexts [27] to
ensure that the corresponding term is well defined.

The mean-field equation obtained by neglecting fluctua-
tions in Eq. (8) and replacing s by its average � is a
simplified, one-dimensional version of the Letokhov equa-
tion for random lasers [2]. The steady state solution ��ðxÞ
is not identically zero due to the � term. Neglecting this,
we obtain that �� destabilizes for � ¼ �c, thus defining a
threshold as assumed above [28].

As usual for a stochastic partial differential equation
[30], Eq. (8) is intended as a limit of some discretization
on a finite mesh whose spacing we denote by �x. For
definiteness and for actual numerical investigation, we
choose the discretized equation for �i to be [i ¼
0; . . . ; N þ 1, ðN þ 1Þ�x ¼ L]

_�i ¼ D½�iþ1 þ�i�1 � 2�i� þ �ð�iÞ
þ 1

2
ðviþ1�iþ1 � vi�1�i�1Þ þ si; (10)

with vi being independent Gaussian variables with
hvii ¼ 0 and hv2

i i ¼ D‘ (we set �x ¼ 1). Such discretiza-
tion is legitimate since �ðxÞ is assumed to be smooth over
distances of the order of the mean free path. The boundary
conditions are �0 ¼ �Nþ1 ¼ 0, and we also impose
v1 ¼ vN ¼ 0 to ensure that the multiplicative term con-
serves the total energy

P
i�i. For the time derivative, we

use a simple Euler discretization with a time step �t.
In the simulations, we choose si to be either a Poisson

process (i.e., si ¼ 1 or zero with probability ��t and
1� ��t, respectively) or a Gaussian with the same aver-
age, si ¼ �þ ffiffiffiffi

�
p

ri, ri being normally distributed and

independent random numbers with hrii ¼ 0 and hr2i i ¼ 1.
Although the first choice is closer to the original formula-
tion of the model, we found that in practice the two
processes yield almost indistinguishable results.

The term in v of Eq. (8) is the leading stochastic correc-
tion to the mean-field evolution. It is a multiplicative pro-
cess and can be regarded as a kind of random advection
whereby fluctuations are transported almost coherently
while keeping the total energy conserved. It thus acts
against the diffusive term that tends to smooth out fluctua-
tions. As a result, the field is highly intermittent in time,
with large-amplitude bursts emerging from a lower-
amplitude background (Fig. 1). It is thus intuitively plau-
sible that such a term is responsible of most of the nontrivial
statistics of the field. As a matter of fact, random advection
dynamics is known to yield strongly non-Gaussian distri-
butions, and even power-law tails [31]. Actually, equations
similar to (10) (with linear gain and periodic boundary
conditions) have been studied in Refs. [32,33] to model
an active scalar (e.g., a temperature field) convected by a
random velocity field. It was argued that power-law tails
generically arise when, as here, both multiplicative and
additive noises are present. Actually, there are two sources

of additive noise. One is the spontaneous emission term s;
the other stems from the fact that the deterministic, steady
state value is �� � 0, thus yielding an additive contribution
of order @ðv ��Þ=@x. There is, however, a crucial difference,
dictated by the physical origin of the noise: the advective
term is a finite-size effect which decreases with the system
size. This can be demonstrated by dimensional analysis.
To be more general, let us consider the extension of Eq. (8)
to d dimensions,

@�

@t
¼ Dr2�þ ��þr � ðv�Þ þ �; (11)

where v is a d-dimensional vector whose components v


(
 ¼ 1; . . . ; d) are Gaussian distributed and satisfy a rela-
tion akin to Eq. (9),

hv
ðx;tÞv
0 ðx0;t0Þi¼D‘d�
;
0�dðx�x0Þ�ðt�t0Þ; (12)

with �d being a generalization of the function in Eq. (9).

For simplicity, we neglected again the
ffiffiffiffi
�

p
term, replaced s

by its average �, and restricted to the simpler case �ð�Þ ¼
��. Let us rewrite Eq. (8) introducing the dimensionless
variables x=L ! x, Dt=L2 ! t, �=" ! �, and we also
rescale D�=L2 ! �. The noise rescales accordingly as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ldþ2=D

p
v ! v. Thus, Eq. (8) is written in the dimension-

less form

@�

@t
¼ r2�þ ��þ �ðLÞr � ðu�Þ þ �; (13)

where each component of u is again an uncorrelated
Gaussian variable with hu2
i ¼ 1 and we have made explicit

the rescaled noise strength which turns out to be � /
ð‘=LÞd=2. As a consequence, we expect that the multiplica-
tive noise will yield sizable power-law tails only for small
enough sizes. When L ! 1, the diffusive term in Eq. (11)
dominates and the power law is no longer observable [33].
The numerical simulations of Eq. (10) are in qualitative

agreement with the above argument. We monitored the
distribution of the field at the center of the mesh �N=2 as
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FIG. 1 (color online). Intermittent evolution of the intensity
�ðx; tÞ obtained by numerical integration of Eq. (10): L ¼ 16,
� ¼ 1:02�c, D ¼ 1=2, ‘ ¼ 1, �ð�Þ ¼ ��=ð1þ�=�sÞ,
�s ¼ 108. Here and in the following �t ¼ 0:01, si is
Poissonian (see text).
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well as the outgoing flux J ¼ D½�1ðtÞ þ�NðtÞ�=2 as a
function of time. This quantity is of experimental interest,
being related to the emission spectra. The tail of the dis-
tributions of both observables displays, upon increasing L,
a smooth crossover from a power-law tail with an exponent
� very close to the one predicted by Eq. (6) to a faster
decay [see Fig. 2(a)]. The same occurs for fixed L upon
approaching the threshold �c [Fig. 2(b)].

The existence of fat tails is intimately related to the
possibility for a spontaneous fluctuation to grow well
beyond the average. The indicator to quantify this is the
generalized Lyapunov exponent [34]. For a perturbation
��ðx; tÞ of the field, which evolves according to the line-
arized version of Eq. (8), let Rð	Þ¼k��ðtþ	Þk=k��ðtÞk
be the response function after a time 	 to a disturbance at
time t. The generalized finite-time Lyapunov exponent

�ðqÞ is then defined by Rqð	Þ 	 exp½�ðqÞ	�, where the
over line denotes a time average. If �ðqÞ> 0 for large
enough q, then the system has a finite probability that a
small perturbation results in a large one. Moreover, the
deviations of �ðqÞ from a linear behavior in q are a
measure of intermittency [34]. Figure 3 shows that �> 0
for q > q�, with q� increasing with L. This signals that
events far from the average become increasingly rare, in
agreement with the above dimensional arguments. Also,
for L ¼ 8, q� ¼ 0:92, which, according to Ref. [32], would
yield a power-law decay with an exponent 1þ q� ¼ 1:92,
in agreement with data in Fig. 2.

To summarize, we have presented a simple model
for diffusive random media with gain which yields a

power-law distribution of the intensities. Our main result
is the Langevin equation for the energy density field,
Eq. (8), that establishes a novel connection between the
physics of scattering media with gain (e.g., random lasers)
and the theory of nonequilibrium phenomena in spatially
extended systems. The random-advection, multiplicative
term in Eq. (8) competes with diffusive and gain terms and
is responsible for unconventional fluctuations. Its rele-
vance is gauged by the effective noise strength �ðLÞ.
This means that Lévy-like fluctuations are more likely to
be observed in lower dimensions (for instance, in d ¼ 2)
and when the mean free path of photons is not too short
with respect to the sample size. In other words, as in the
case of advective mixing [32], small systems are also
necessary to observe the effect. For an experimental vali-
dation of the model for random lasers, one should compare
the emission statistics for samples with different �ðLÞ. This
is achieved, for instance, by changing the gain volume
(controlled by pumping) and/or the mean free path which
can be tuned by varying the density of scatterers.
I thank S. Cavalieri, F. Ginelli, and R. Livi.
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