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We propose an interferometric setting for the ancilla-assisted measurement of the characteristic

function of the work distribution following a time-dependent process experienced by a quantum system.

We identify how the configuration of the effective interferometer is linked to the symmetries enjoyed by

the Hamiltonian ruling the process and provide the explicit form of the operations to implement in order to

accomplish our task. We finally discuss two physical settings, based on hybrid optomechanical-

electromechanical devices, where the theoretical proposals discussed in our work could find an experi-

mental demonstration.
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Thermodynamics is one of the pillars of the natural
sciences. Its principles can predict the occurrence and
efficiency of complex chemical reactions and biological
processes. In physics, the conduction of heat across a
medium or the concept of arrow of time are formulated
thermodynamically. In information theory, the definitions
of information and entropy are also given in thermody-
namical terms. Moreover, the tightness of the link between
information and thermodynamics can be deduced from the
interpretation of the landmark embodied by Landauer’s
principle [1].

The dexterity characterizing the current experimental
control at the microscopic scale opens up tantalizing ques-
tions, the most pressing probably being the following: what
happens to thermodynamics when we deal with the non-
quasistatic dynamics of quantum systems brought out of
equilibrium? An invaluable tool for the formulation of an
answer in this sense has been provided with the formulation
of nonequilibrium fluctuation relations and their quantum
extension [2,3], which has recently enabled investigations
at the crossroad of quantum physics, thermodynamics, and
information theory [4]. This includes proposals for experi-
mental quantum thermal machines [5], the study of the link
between fluctuation relations and critical phenomena in
many-body systems [6,7], the verification of the Jarzynski
equality [8–10], and the extension to open dynamics [11].

The verification and use of the Jarzynski inequality
[10,11] requires the determination of the work distribution
following a process undergone by a system, a goal that
needs feasible experimental strategies. In Ref. [8,12], two
seminal proposals have been made: Huber et al. suggested
a scheme based on the performance of projective energy
measurements on the trapped-ion system undergoing a
process. Their method uses an ingenious ‘‘filtering
scheme’’ whose implementation, unfortunately, can be of
significant practical difficulty. Heyl and Kehrein [12], on
the other hand, showed that optical spectra can be used to
measure the work distribution of specific nonequilibrium

processes. However, their method only applies to sudden
quenches and is ineffective for general processes.
In this Letter we propose a way to infer the quantum

statistics of a work distribution by relying on an inter-
ferometric approach that delegates the retrieval of the
information we are after to routine measurements per-
formed on a finite-size ancilla. We demonstrate that a
qubit-assisted Ramsey-like scheme is effective in fully
determining the characteristic function of the work distri-
bution following a general quantum process. The latter
contains the same information as the work distribution
itself and can be equally used in the framework of fluc-
tuation relations for an out-of-equilibrium configuration.
We identify the relation between symmetries in the
quantum process and the corresponding Ramsey interfer-
ometer. Differently from Ref. [8], our scheme does not
rely on a specific setting and, by delegating the retrieval
of information to single-qubit measurements, bypasses
the problem of energy-eigenstate projections. In quite a
stark contrast with Ref. [12], our proposal is valid for any
process and can be used for a vast range of physical
situations (cf. Ref. [13] for a related analysis on a trapped
ion). As an illustration, we apply it to a micro- or nano-
mechanical oscillator coupled to a two-level system and
undergoing a displacement in phase space, which is a
situation of strong experimental interest. Designing viable
ways to access quantum statistics of nonequilibrium pro-
cesses is a significant step towards the grounding of this
fascinating area and the spurring of potential ramifica-
tions in fields such as quantum control and foundations of
quantum mechanics [4,14,15].
Quantum fluctuation relations: a brief review.—Here we

give a brief summary of the formalism that will be used
throughout this work. We consider a process undergone by

systemS and described by aHamiltonian Ĥ ð�tÞ depending
on a work parameter �t, which is assumed to be externally
controlled. At t ¼ 0�, S is in contact with a reservoir and

initialized in a thermal state �th
S ð�0Þ ¼ e��Ĥ ð�0Þ=Zð�0Þ at
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inverse temperature � and work parameter �0 [Zð�Þ ¼
Tre��Ĥ ð�Þ is the partition function]. At t ¼ 0þ, we detach
S from the reservoir and perform a process consisting
of the change of �t to its final value ��. It is convenient
to decompose the Hamiltonians connected by the

process as Ĥ ð�0Þ ¼ P
nEnð�0Þjnihnj and Ĥ ð��Þ ¼P

mE
0
mð��Þjmihmj, where (En; jni) [(E0

m; jmi)] is the nth
[mth] eigenvalue-eigenstate pair of the initial [final]
Hamiltonian. The corresponding work distribution can be
written as [3] P!ðWÞ :¼ P

n;mp
0
np

�
mjn�½W � ðE0

m � EnÞ�.
Here, we have introduced the probability p0

n that the
system is found in state jni at time t ¼ 0 and the condi-
tional probability p�

mjn to find it in jmi at time � if it was

initially in jni and evolved under the action of the propa-

gator Û�. P!ðWÞ encompasses the statistics of the initial
state (given by p0

n) and the fluctuations arising from
quantum measurement statistics (given by p�

mjn). For our
purposes, it is convenient to define the characteristic func-
tion of P!ðWÞ [16],

�ðu; �Þ ¼
Z

dWeiuWP!ðWÞ

¼ Tr½Uy
� eiuĤ ð��ÞÛ�e

�iuĤ ð�0Þ�th
S ð�0Þ�: (1)

From Eq. (1), the Jarzynski equality [10] is found as
�ði�; �Þ ¼ he��Wi ¼ e���F. The characteristic function
is also crucial for the Tasaki-Crooks relation �F ¼
ð1=�Þ ln½�0ðv; �Þ=�ðu; �Þ� [3,17] with �0ðv; �Þ the charac-
teristic function of the backward process obtained taking

�� ! �0 and evolving �
th
S ð��Þ throughUy

� ). Here�F is the

net change in the equilibrium free energy of S. This dem-
onstrates the central role played by the characteristic func-
tion in determining the equilibrium properties of a system.
We shall now illustrate a protocol for the interferometric
determination of �ðu; �Þ. This would then enable the
convenient evaluation of the figures of merit discussed
above.

A simple illustrative case.—To fix the ideas before
attacking the general protocol we consider the

Hamiltonian for S Ĥ SðtÞ ¼ gð�tÞĥ, with ĥ an operatorial
part that remains unchanged irrespective of the process
responsible for the change of the work parameter and

specified by the function gð�tÞ. Clearly Ĥ SðtÞ commutes

with itself and Û� ¼ e�iĥ
R

�

0
gð�tÞdt at all instants of time.

That is ½Ĥ i;Ĥ f� ¼ ½Û�;Ĥ iðfÞ� ¼ 0 with Ĥ i �
Ĥ Sð0Þ ¼ gð�0Þĥ and Ĥ f � Ĥ Sð�Þ ¼ gð��Þĥ. The

characteristic function thus simplifies as

�sðuÞ ¼ Tr½eiðĤ f�Ĥ iÞu�th
S ð�0Þ� (2)

and is fully determined by the changes induced in Ĥ SðtÞ
by the process. This allows us to make a significant
progress in the illustration of our scheme. Indeed, let us

introduce an ancilla qubit A, whose role is to assist in the
measurement of �sðuÞ. Moreover, we consider the S-A

evolution ĜðuÞV̂ðuÞ, where V̂ðuÞ ¼ e�iĤ iu � 1̂A is a local

transformation on S, and ĜðuÞ is the controlled A-S gate

ĜðuÞ ¼ 1̂S � j0ih0jA þ e�iðĤ f�Ĥ iÞu � j1ih1jA; (3)

which applies e�iðĤ f�Ĥ iÞu to the state of S only when A is
in j1iA and leaves it unaffected otherwise. Gates having

the form 1S � j0ih0jA þ ÛS � j1ih1jA (with ÛS a unitary
for the system), which are clearly of the form of Eq. (3)
can be generated, for instance, by S-A Hamiltonians
having the structure OS � j1ih1jA, with OS an appropriate
Hamiltonian term.
Inspired by Ramsey-like schemes for parameter

estimation [18,19], our protocol proceeds as follows: We

prepare j0iA and apply a Hadamard transform ĤA ¼
ð�̂x;A þ �̂z;AÞ=

ffiffiffi
2

p
[20] that changes it into the eigenstate

of the x Pauli matrix jþiA ¼ ðj0iA þ j1iAÞ=
ffiffiffi
2

p
. We then

apply ĜðuÞV̂ðuÞ on �th
S � jþihþjA and subject A to a

second Hadamard transform [cf. Fig. 1(a)]. Gate ĜðuÞ
establishes quantum correlations between A and S as
shown by the fact that information on S can be retrieved
from the ancilla as

�A ¼ TrS½ĤAĜðuÞV̂ðuÞð�th
S � jþihþjAÞV̂yðuÞĜyðuÞĤA�

¼ ð1̂A þ ��̂z;A þ 	�̂y;AÞ=2; (4)

with � ¼ Re�s and 	 ¼ Im�s. This proves the effective-
ness of our protocol for the measurement of �sðuÞ, which is
achieved by measuring the (experimentally straight-
forward) longitudinal and transverse magnetization h�̂z;Ai
and h�̂y;Ai of A.
General protocol.—We now relax the previous assump-

tion on the form of the Hamiltonian and consider the

general case where ½Ĥ i;Ĥ f� � 0 and ½Û�;Ĥ iðfÞ� � 0.

Correspondingly, the characteristic function takes the form

)b()a(

FIG. 1 (color online). (a) Quantum circuit illustrating the pro-
tocol for the measurement of �sðuÞ. The ancilla A is a qubit
initialized in j0iA and undergoing a Hadamard gate Ĥ. System S
is prepared in a thermal state �th

S and is subjected to the local

transformation V̂. See the body of the manuscript for the explicit
form of the gates (whose dependence on u has been omitted
here). (b) Quantum circuit illustrating the scheme for the most
general process undergone by S. In both panels we show the
symbol for conditional A-S gates controlled by the state of the
ancilla. In panel (b) we also picture the symbol for a full
inversion gate as given by �̂x, A.
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in Eq. (1) and the interferometric approach illustrated
above still applies, the only difference being the form of
the controlled operation to be applied on the S state.
Explicitly, we should implement

Ĝðu;�Þ ¼ Û�e
�iĤ iu� j0ih0jAþ e�iĤ fuÛ�� j1ih1jA; (5)

which can be decomposed into local transformations

and A-controlled gates as Ĝðu; �Þ ¼ ð1S � �̂x;AÞĜ2ðu; �Þ�
ð1S � �̂x;AÞĜ1ðu; �Þ [cf. Fig. 1(b)] with

Ĝ1ðu; �Þ ¼ 1̂S � j0ih0jA þ e�iĤ fuÛ� � j1ih1jA;
Ĝ2ðu; �Þ ¼ 1̂S � j0ih0jA þ Û�e

�iĤ iu � j1ih1jA:
(6)

Using the same preparation of A as above and the
Hadamard transforms, we obtain a reduced state identical
to the second line of Eq. (4) with � ! Re�ðu; �Þ and
	 ! Im�ðu; �Þ.

Physical examples.—Two situations of current experi-
mental interest can be used to illustrate our main findings.
They are both based on the hybrid coupling between a
two-level system and a mechanical oscillator, which can be
either microscopic (in a cavity optomechanics setup) or
nanoscopic (as in electromechanics). We now show how to
achieve the Hamiltonians regulating the processes that we
have so far described in both scenarios and illustrate the
principles of our proposal by calculating the corresponding
characteristic function.

We start from a microscopic setting where a three-level
atom in a � configuration is coupled to a single-mode
cavity having a movable mirror and pumped by a laser at
frequency !p. The atom is driven by a second field (fre-

quency !i) entering the cavity radially [cf. Fig. 2(a)]. The
logical states fj0i; j1ig of A are encoded in the fundamental
atomic doublet (jei being the common excited state).
The scheme includes the driving (at rate �) of the tran-
sition j1i $ jei by the field at frequency !i. The transition
j0i $ jei is guided by the cavity field (frequency !c) at
rate g. Both the fields are detuned by � from jei and we
introduce the detuning � ¼ !c �!p. System S is embod-

ied by the movable mirror, oscillating harmonically at
frequency !S and driven (at rate 
) by the cavity through
radiation-pressure [21]. We assume large single-photon
Raman detuning and negligible decay from the atomic
excited state, so that an off-resonant two-photon Raman
transition is realized (dephasing will be discussed later).
We take � � ðg;
Þ so that both jei and the cavity field
are virtually populated and can be eliminated from the
dynamics. We then move to a rotating frame defined by
the operator !pĉ

yĉþ!ijeihej þ!10j0ih0jA (we assume

@ ¼ 1 throughout the Letter) with ðĉ; ĉyÞ the operators of
the cavity field.

We thus get Ĥ micro ¼ !Sb̂
yb̂þ �ðb̂y þ b̂Þ � j1ih1jA

with � ¼ 
g2�2=�2�2 and ðb̂; b̂yÞ the operators of the
mechanical oscillator [22]. Through the two-photon

Raman transition, the virtual quanta resulting from the
atom-cavity field interaction are transferred (by the cavity
field) to S. The state of the latter is correspondingly dis-
placed in phase space, in a way controlled by the state of A.
By driving the cavity with a bichromatic pump with fre-
quencies !p �!S=2 and relative phase �, the effective

coupling between A and S becomes such that displace-
ments in any direction of the phase space of the movable
mirror can be arranged [23–25]. This includes the possi-
bility to fully invert the sign of � by arranging for � ¼ �.
Moreover, considering a time-dependent amplitude of the
driving field, we get � ! �t ¼ 
g2�2ðtÞ=�2�2, so that we
finally obtain

Ĥ
0
microðtÞ ¼ !Sb̂

yb̂þ �tðb̂yei� þ b̂e�i�Þ � j1ih1jA: (7)

The state of A can be manipulated and reconstructed
through an optical probe and standard tools in quantum
optics. Current progress in the fabrication of mechanical
oscillators allow for very small decoherence rates, while
optical cavities with large quality factors are used in opto-
mechanical experiments [21], thus making a quasiunitary
picture plausible. However, in order to provide a full
assessment of the feasibility of our scheme, we will soon
provide a discussion of decoherence effects.
A similar effective model is obtained by considering

the system shown in Fig. 2(b), which involves a

(a)

)c()b(

FIG. 2 (color online). (a) Hybrid micro-optomechanical set-
ting for the measurement of �ðu; �Þ. The process is undergone by
a system embodied by the movable cavity mirror. The ancilla is
encoded in the ground-state doublet of a three-level atom.
(b) Nanomechanical version of the setup. System S is an electri-
cally driven nanobeam (bias voltage Vx). The ancilla is a CPB
coupled to S via the capacitance Cx. The state of the CPB is
controlled by the gate voltage Vg (coupled to the box through the

capacitance Cg) and the Josephson energy EJ . (c) Plot of �ðu; �Þ
against !Su for �n ¼ 1, �t ¼ 0:1!S tanhð!StÞ, and � ¼ 10!�1

S .

The solid (dashed) lines show real and imaginary part of the
ideal (damped with � ¼ 5��1) characteristic function.
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nanomechanical oscillator (a nanobeam) coupled capaci-
tively to a Cooper-pair box (CPB) operating in the charge-
qubit regime at the so-called charge degeneracy point [26].
In such conditions, the dynamics of the CPB can be
approximated to that of a two-level system encoded in
the space spanned by states ja�i, which are symmetric
and antisymmetric superpositions of states with exactly 0
and 1 excess Cooper pairs in the superconducting island
shown in Fig. 2(b), and encode our ancilla. The natural

Hamiltonian of the system reads Ĥ 1 ¼ ½Q̂�
QgðtÞ�2=ð2CtÞ � EJðjaþihaþj � ja�iha�jÞ þ!Sb̂

yb̂ with

Q̂ the canonical charge operator of the CPB, Ct the ca-
pacitance of the island, QgðtÞ ¼ CgVgðtÞ þ CxVxðtÞ the

gate charge, EJ the Josephson energy, !S the frequency
of the oscillator (as before) [26], and Vg½x� the gate [drive]
voltage. For a charge qubit at the degeneracy point, an
external magnetic flux can set the conditions for negligible
Josephson energy with respect to the other rates of the

Hamiltonian [26]. By defining �̂x;A ¼ jaþiha�j þ ja�i�
haþj, expanding Ĥ 1 in series of the ratio between the
actual position of the oscillator and its equilibrium distance
from the CPB (the amplitude of the oscillations is assumed
small enough that only first-order terms are retained) and
adjusting the voltages so thatQgðtÞ ’ 0, the Hamiltonian of

the system becomes Ĥ nanoðtÞ ¼ !Sb̂
yb̂þ �tðb̂þ b̂yÞ �

�̂x;A (the form of �t in this case is inessential for our tasks)

[27,28]. The state of A can be processed (measured) tuning
VgðtÞ (using single-electron transistors) [26].

Both models describe a harmonic oscillator driven by an
external force that depends on the state of the ancilla. From
now on, in order to fix the ideas, we concentrate on the
model embodied by Eq. (7). The process that we aim to
discuss here is embodied by a rapid change �0 ¼ 0 ! ��

in the work parameter entering the system’s Hamiltonian

Ĥ oscðtÞ ¼ !Sb̂
yb̂þ �tðb̂þ b̂yÞ, which implements a dis-

placement of the state of S in its associated phase space. The
fact that, contrary to our assumptions so far, A conditions

only the term �tðb̂þ b̂yÞ in Ĥ
0
microðtÞ and not the whole

Ĥ oscðtÞ results in gates ~̂Gðu; �Þ and ~̂G1;2 that are slightly

different from those given in Eq. (6). However, a detailed
calculation shows that such differences are inessential to the
effectiveness of the proposed protocol.Whilewe refer to the
Supplemental Material presented in Ref. [29] for a rigorous
and detailed analysis, for the sake of completeness here we
provide a brief account of the form of such conditional
gates. More specifically, the reconstruction of the �ðu; �Þ
associated with the process at hand is possible using

the conditional gate ~̂Gðu; �Þ ¼ ð1S � �̂x;AÞ ~̂G2ðu; �Þ �
ð1S � �̂x;AÞ ~̂G1ðu; �Þ with ~̂G1ðu; �Þ ¼ ĜðuÞK̂ð�ÞeiĤ free�

and ~̂G2ðu;�Þ¼K̂ð�ÞeiĤ free�. Here Ĥ free¼!Sb̂
yb̂,

K̂ð�Þ¼ T̂ e�i
R

�

0
Ĥ

0
microðtÞdt (in Ref. [29] we give the explicit

form of such gate), T̂ is the time-ordering operator, and

ĜðuÞ � e�iĤ
0
microð�Þu

¼ e�iĤ freeuj0ih0jA þ e�iĤ oscð�Þuj1ih1jA; (8)

which is obtained by setting the work parameter to its
final value�� and evolving for a time u. A calculation based
on phase-space methods allows us to evaluate the state of A
associated with the process. Following our protocol and
using values of the parameters in typical ranges for the
suggested microscopic experimental scenario [22], an ini-
tial thermal state of mean occupation number �n, and a
rapid change of ��, we find the behavior of �ðu; �Þ shown
in Fig. 2(c).
Let us now briefly assess the case embodied by

Ĥ nanoðtÞ. This differs from the one illustrated above due

to the fact that, differently from Ĥ
0
microðtÞ, the �̂x;A opera-

tor enters the coupling with the system. In principle, this
makes the implementation of our protocol different from
the micro mechanical case. However, as illustrated in [29],
such differences can be removed using local operations
applied to the CPB and the nanobeam independently.
This means that the Hamiltonian for the nanomechanical
configuration can be turned into a model formally equiva-

lent to Ĥ
0
microðtÞ, thus enabling the use of the same gates

identified above without the need to redesign the whole
protocol [cf. Ref. [29] for a formal proof].
To evaluate the feasibility of our proposal, it is

important to consider the effect of decoherence. The
most critical influence would come from dephasing affect-
ing the quantum coherences in the A state, which are key
to the success of our protocol. This can be easily included
in our analysis by considering an exponential decay
(at rate �) of the off-diagonal elements of the state of A

between the gates Ĝ1;2 (we assume that local rotations are

performed so quickly that no detrimental effect would be
observed). This results in the decay of �ðu; �Þ, as shown in
Fig. 2(c), where quite a large damping rate is considered.
Yet, the features of the characteristic function remain fully
revealable. A different analysis holds for a decoherence-
affected process undergone by the system. As already
discussed, this requires a redefinition of �ðu; �Þ in terms
of Kraus operators, as recently shown by Albash et al. in
[9]. Our preliminary assessment shows that the general
working principles of our interferometric scheme hold
unchanged even in this case. A full analysis will be
presented in Ref. [29].
Conclusions.—We have proposed an interferometric

protocol for the measurement of the characteristic function
of the work distribution corresponding to a process
enforced on a system. The scheme requires both local
and A-controlled operations on S, and shares similarities
with Ramsey-based strategies for parameter estimation.
Although our proposal bears no dependence on a specific
experimental setting and is applicable to any system allow-
ing for a controllable system-ancilla interaction and the
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agile measurement of A [13], we have illustrated it discus-
sing the case of a mechanical oscillator undergoing a
phase-space displacement and coupled to an ancilla. This
embodies an interesting out-of-equilibrium quantum dy-
namics of current strong experimental interest. As �ðu; �Þ
is a key element in the framework of quantum fluctuation
relations, designing viable strategies for its inference is
an important step forward for the grounding of out-of-
equilibrium quantum thermodynamics. Our proposal con-
tributes to such a quest by opening up the possibility for
an experimental verification of the connections between
out-of-equilibrium quantum statistics and criticality in a
quantum many-body system [6,14,19]. Interesting routes
for the application of our protocol include the study of the
properties of quantum thermal machines [15].
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