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Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly

growing data sets, such a task can be intractable for classical computers, as the best known classical

algorithms require a time proportional to the number of variables N. A recently proposed quantum

algorithm shows that quantum computers could solve linear systems in a time scale of order logðNÞ, giving
an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm,

solving 2� 2 linear equations for various input vectors on a quantum computer. We use four quantum bits

and four controlled logic gates to implement every subroutine required, demonstrating the working

principle of this algorithm.
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The problem of solving a system of linear equations
plays a central role in diverse fields such as signal process-
ing, economics, computer science, and physics. Such sys-
tems often involve tera or even petabytes of data, and thus
the number of variables N, is exceedingly large. However,
the best known algorithms for solving a system of N linear
equations on classical computers requires a time complex-
ity on the order of N, posing a formidable challenge.

Harnessing the superposition principle of quantum
mechanics, quantum computers [1,2] promise to provide
exponential speedup over their classical counterparts for
certain tasks. Notable examples include quantum simula-
tion [3,4] and Shor’s quantum factoring algorithm [5],
which have driven the field of quantum information over
the past two decades as well as generating significant
interest in quantum technologies that have enabled experi-
mental demonstrations of the quantum algorithms in differ-
ent physical systems [6–10].

Recently, Harrow et al. [11] proposed another powerful
application of quantum computing for the very practical
problem of solving systems of linear equations. They
showed that a quantum computer can solve a system of
linear equations exponentially faster than a classical com-
puter in situations that we are only interested in expectation
values of an operator associated with the solution rather
than the full solution. A quantum algorithm has been
designed such that the value of this property may be
estimated to any fixed desired accuracy within Oð logðNÞÞ
time, making it one of the most promising applications of
quantum computers.

In this article, we report an experimental demonstration
of the simplest meaningful instance of this algorithm, that

is, solving 2� 2 linear equations for various input vectors.
The quantum circuit is optimized and compiled into a
linear optical network with four photonic quantum bits
(qubits) and four controlled logic gates, which is used to
coherently implement every subroutine for this algorithm.
For various input vectors, the quantum computer gives
solutions for the linear equations with reasonably high
precision, ranging from fidelities of 0.825 to 0.993.
The problem of solving linear equations can be summa-

rized as follows: We aim to solve A~x ¼ ~b for ~x, when

given a N � N Hermitian matrix A and a vector ~b. To

adapt this problem to quantum processing, ~x and ~b are

scaled to unit length (i.e., k ~xk ¼ k ~bk ¼ 1). Thus, a vector
~b can be represented by a quantum state jbi ¼ P

ibijii on
Oð logðNÞÞ qubits where jii denotes the computational
basis. The desired solution ~x can then be encoded within
the quantum state as

jxi ¼ cA�1jbi; c�1 ¼ kA�1jbik: (1)

The quantum algorithm devised in Ref. [11] was designed
to synthesize jxi [see Fig. 1(a)]. The quantum algorithm
involves the following three subsystems: a single ancilla
qubit initialized in j0i, a register of n qubits of working
memory initialized in j0i�n, and an input state initialized in
jbi. The input state jbi can be expanded in the basis of juji
as jbi ¼ P

N
j¼1 �jjuji, where juji is the eigenstate of A,

and �j ¼ hujjbi. Execution of the algorithm can be

decomposed into the following three subroutines: (1) phase
estimation, (2) controlled rotation, and (3) inverse phase
estimation.
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Step (1) is used to determine the eigenvalues of A,
which we denote by �j. Phase estimation is essentially a

controlled unitary with a change of basis that maps the
eigenvalues onto the working memory [1,12]. The phase
estimation protocol is applied to the input, using the
working memory as control, to give

XN
j¼1

�jjujij�ji; (2)

where j�ji represents the binary representation of �j,

stored to a precision of n bits.
In step (2), one needs to extract the eigenvalues of A�1,

i.e., ��1
j from j�ji. This is realized through an additional

ancillary qubit initialized in the state j0i. Application of
an appropriate controlled rotation Rð��1Þ on this qubit
[see Fig. 1(a)] transforms the system to

XN
j¼1

�jjujij�ji
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

�2
j

vuut j0i þ C

�j

j1i
1
A: (3)

The final step involves applying the gate sequence of
step (1) in reverse. This disentangles the register, which
is reset to j0i�n. Therefore, we end up with

XN
j¼1

�jjuji
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

�2
j

vuut j0i þ C

�j

j1i
1
A: (4)

Measurement of the ancillary qubit and postselection (with
a successful probability) of an outcome of j1i will result in
an output state

P
N
j¼1 Cð�j=�jÞjujiwhich is proportional to

our expected result state jxi.
Resources needed for the algorithm of a general s-sparse

N � N matrix A is estimated to beOð logðNÞs2�="Þ, where
� is the condition number (the ratio between A’s largest
and smallest eigenvalues) and " is the acceptable error of
the output vector (see Ref. [11] for more details). Putting
together the success probability in the postselection mea-
surement in step (3), the total runtime of the quantum
algorithm is OðlogðNÞs2�2="Þ, which outperforms the
best classical one and reaches an exponential speedup
generically [11].
Here we demonstrate a proof-of-principle experiment of

this algorithm: solving systems of 2� 2 linear equations.
We choose the matrix A to be

A ¼ 1:5 0:5

0:5 1:5

 !
; (5)

(a)

(b)

FIG. 1. Quantum circuits for solving systems of linear equations. (a) Outline of the original quantum algorithm proposed
in Ref. [11]. The light gray blocks represent three basic subroutines of the algorithm. U ¼ P

T�1
k¼0 jkihkj � eiAkt0=T , where

T ¼ 2t with t being the number of registers, and t0 is chose as 2�. H is a Hadamard gate. FT and FTy are the Fourier
transformation and the inverse Fourier transformation [1], respectively. The controlled rotation R evolves the system into the statePN

j¼1 �jjujij�jið
pð1� C2=�2

j Þj0i þ ðC=�jÞj1iÞ, where C is a normalizing constant. The inverse phase estimation subroutine restores

the register to j0i�n. Finally, the vector ~x, the solution of the system of linear equations, can be obtained by conditioning on the
measurement outcome of j1i in ancilla qubit. (b) The optimized circuit with four qubits and four entangling gates (see main text for
details). The two swap gates are canceled out.
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and we choose the following values for input vector jbi:

jb1i¼ 1ffiffiffi
2

p 1

1

 !
; jb2i¼ 1ffiffiffi

2
p 1

�1

 !
; jb3i¼

1

0

 !
: (6)

The matrix A is chosen such as its eigenvalues are 1 and 2
which can be encoded with two qubits in registers [13].
This allows us to optimize the circuit requiring four qubits
and four entangling gates as shown in Fig. 1(b). The phase
estimation subroutine of the circuit can be compiled into
two controlled-NOT (CNOT) gates, a swap gate, and three
single qubit rotation gates. Following the circuit design of
Ref. [14], the Rð��1Þ rotation subroutine is implemented in
two steps: finding the reciprocal j1=�ji from eigenvalue

j�ji stored in registers, which in our case can be realized by
a swap gate, and controlled unitary gates Hð�Þ, where

Hð�Þ ¼ cosð2�Þ sinð2�Þ
sinð2�Þ �cosð2�Þ

 !
: (7)

Finally, the subroutine of the inverse phase estimation is
realized using a semiclassical version that employs single-
qubit rotations conditioned on measurement outcomes [15].

To implement the quantum circuit shown in Fig. 1(b), we
prepare four single photons from spontaneous parametric
down-conversion [16] as the input qubits (Fig. 2). The
horizontal (H) and vertical (V) polarizations of the single
photons are used to encode the logic qubits j0i and j1i,

respectively. The experimental challenge of implementing
the circuit in Fig. 1(b) lies in the four entangling gates
between the single photonic qubits.
In the phase estimation subroutine, noting that the target

qubits of the CNOT gates are fixed, their implementations
can be simplified using combinations of a polarization
beam splitter (PBS) and a half-wave plate (HWP), through
which an arbitrary control qubit �jHi þ �jVi and the
target qubit jHi evolve into �jHijHi þ �jVijVi which is
the desired output of CNOT operations [17]. The Rð��1Þ
rotation subroutine involves two consecutive controlled
unitary gates,Hð�=8Þ andHð�=16Þ. Instead of decompos-
ing it into multiple CNOT gates [1,17], we adopt a more
efficient, entanglement-based construction method [18].
The ancilla qubit is first entangled with the register
qubits by mixing on PBS5, and then passed through a
polarization-dependent Sagnac-like interferometer where
the desired controlled unitary operations are applied (see
the Supplemental Material [19] for more details and pho-
ton loss analysis). Finally, the ancillary qubit is measured,
and when an outcome state j1i is obtained, the algorithm is
announced successful.
Before running the algorithm, we first characterized

the performance of the optical quantum circuit. The two
registers, ancilla and input qubits (jb3i) are initialized in
the jHiA � jHiR1 � jHiR2 � jHib state. Theoretically these
four qubits will evolve into a maximally entangled
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FIG. 2 (color online). Experimental setup. There are four key modules in the optical setup. (1) Qubit initialization: Ultraviolet laser
pulses with a central wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two �-barium
borate (BBO) crystals to produce two photon pairs. The four single photons are spatially separated by PBS1 and PBS2 and initialized
using HWPs, with three of them in the state jHii, where i denotes their spatial modes, and one in state jbi. Photon 1 is used as the input
vector qubit and photon 4 is used as the ancilla. Photons 2 and 3 are used as the register qubits R1 and R2, respectively. (2) Phase
estimation: The input qubit jbi is mixed with the two register qubits on PBS3 and PBS4 to simulate the CNOT gates in Fig. 1(b).
(3) Rð��1Þ rotation: An entanglement-based implementation of the two controlled unitary gates (see main text for details). (4) Inverse
phase estimation: This is realized semiclassically by using measurement and classical feed forward. To achieve good spatial and
temporal overlap, all photons are spectrally filtered (�FWHW ¼ 3:2 nm) and detected by fiber-coupled single-photon detectors
(D1; . . . ; D4). The coincidence events are registered by a programmable multichannel coincidence unit.
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four-qubit Greenberger-Horne-Zeilinger (GHZ) state during
the subroutine of phase estimation and Rð��1Þ rotation.
After the four photons pass through PBS3, PBS4 and
PBS5, we observed the Hong-Ou-Mandel type interference
among the four photons [20,21]. We measured the fidelity—
defined as the overlap of the experimentally produced
state with the ideal one—of the generated four-photon
GHZ state [22]. The measurements (see Fig. S1 in the
Supplemental Material [19]) yield a state fidelity of
0.65(1), which exceeds the threshold of 50% [23] by 15
standard deviations. This confirms the presence of genuine
entanglement [24] created during the quantum computation.

We have implemented the algorithm for various input
vectors jbi which are varied by tuning the HWP in front of
PBS3. In accordance with Fig. 1(b), the two registers
should be projected to the state j0i, the ancilla qubit to
state j1i. The output jxi is measured in some desired
observable. In the experiment, each run of the algorithm
is finished by a fourfold coincidence measurement where
all four detectors fires simultaneously.

We characterize the output by measuring the expectation
values of the Pauli observables Z, X, and Y for each input
state jbi. Figure 3 shows both the ideal (gray bar on the left)
and experimentally obtained (red bar on the right) expecta-
tion values for each observable. To quantify the algorithmic
performance, we compute the output state fidelity F ¼
hxj�xjxi, where jxi is the ideal state and �x is the experi-
mentally reconstructed density matrix of the output state
from the expectation values of the Pauli matrices (see
Fig. S2 in the Supplemental Material [19]). Compared
with ideal outcomes, the output states have fidelities of
0.993(3) for jb1i, 0.825(13) for jb2i, and 0.836(16) for
jb3i, respectively.

The difference in the performance for the three inputs is
linked to the specific optical setup used in the experiment.

The fidelity imperfections for jb2i and jb3i are caused by
high-order photon emission events and postselection in
CNOT gates. However, in the case for jb1i, high-order photon
emissions and postselection do not give a negative contri-
bution, giving rise to a near-ideal algorithm performance.
In summary, we have presented a proof-of-principle

demonstration of the quantum algorithm for solving
systems of linear equations in a small-scale quantum
computer involving four qubits and four entangling gates.
We have implemented every subroutine at the heart of the
algorithm and characterized the circuit and algorithmic
performances by the quantum state fidelities. The tech-
nique of coherently controlling multiple qubits and execut-
ing complex, multiple-gate quantum circuits presents an
advance on linear optics quantum computation [21,25] and
allows us to test other similar quantum algorithms such as
solving differential equations [26,27] and data fitting [28].
In principle, efficient quantum computation can be

achieved using single-photon sources, linear optics, and
single-photon detectors [25,29,30]. The current experi-
ment, however, is still limited by a probabilistic single-
photon source and inefficient detectors. It can be expected
that with ongoing progress on deterministic single-photon
sources [31], high-efficiency (> 93%) single-photon
detectors [32], and on-chip integration [7], a larger-scale
quantum circuit for solving more complex linear equations
can be implemented in the future.
We thank Xi-Lin Wang, X.-W. Yao, X. Ji, Y. Cao, and

Daniel James for helpful discussions. This work was
supported by the National Natural Science Foundation
of China, the Chinese Academy of Sciences, and the
National Fundamental Research Program (under Grant
No. 2011CB921300). C.-Y. L. acknowledges Churchill
College Cambridge and the Youth Qianren Program.
N.-L. L. acknowledges Anhui Natural Science Foundation.

FIG. 3 (color online). Experimental results. Three different input vectors are chosen: (a) jb1i ¼ ðjHi þ jViÞ= ffiffiffi
2

p
, (b) jb2i ¼ ðjHi �

jViÞ= ffiffiffi
2

p
, and (c) jb3i ¼ jHi. The quantum algorithm is run to determine the the expectation value hxjM̂jxi, where M̂ is some operator.

For each input state jbi, the theoretically predicted (gray bar on the left) and experimentally measured (red bar on the right) expectation
values of the observables of the Pauli matrices Z, X, and Y are presented. The output states are measured with a fidelity of 0.993(3),
0.825(13), and 0.836(16) for jb1i, jb2i, and jb3i, respectively. The error bars denote one standard deviation, deduced from propagated
Poissonian counting statistics of the raw detection events.
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