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The self-consistent GW band gaps are known to be significantly overestimated. We show that this
overestimation is, to a large extent, due to the neglect of the contribution of the lattice polarization to the
screening of the electron-electron interaction. To solve this problem, we derive within the GW formalism
a generalized plasmon-pole model that accounts for lattice polarization. The resulting GW self-energy is
used to calculate the band structures of a set of binary semiconductors and insulators. The lattice
contribution always decreases the band gap. The shrinkage increases with the size of the longitudinal-
transverse optical splitting and it can represent more than 15% of the band gap in highly polar compounds,
reducing the band-gap percentage error by a factor of 3.
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For the past decades we have witnessed a steady increase
of the accuracy of first principles electronic band structure
calculations. At the lowest level we have density functional
theory (DFT), normally with a local-density (LDA) or
a generalized-gradient approximation to the exchange-
correlation functional. Unfortunately, the Kohn-Sham cal-
culations strongly underestimate quasiparticle band gaps,
often by more than a factor of 2. At the next step, we have
the GW approximation of many-body perturbation theory
[1-3]. For many years, the standard practice was to start
from a DFT calculation and to evaluate perturbatively the
GW energy corrections to the Kohn-Sham band structure.
This procedure, which we will refer to as GW@LDA, is
justified only when the departure wave functions and band
structure are already close to the quasiparticle ones. It yields
a very good agreement with experimental photoemission
data, especially for standard sp materials. However, it is
well known that GW@LDA fails for many crystals that
have d electrons participating in the states close to the
band gap [4-7]. To solve this problem one can perform
restricted self-consistent (sc) GW, using for example the
quasiparticle (QP) scGW (QPscGW) method [8,9] or per-
turbative GW on top of sc Coulomb hole plus screened
exchange [4-7,10]. The scGW techniques have the advan-
tage of being independent of the starting point and of giving
accurate results for systems that are not treatable using
standard approximations, at the price of a larger computa-
tional cost. We should emphasize that these techniques allow
for a precise treatment of materials that were considered out
of reach for ab initio calculations only 10 years ago.

Unfortunately, self-consistent GW calculations give too
large band gaps, especially for polar materials, the simplest
example being probably LiF [6]. The overestimation of the
band gap within QPscGW was also discussed in literature
for III-V compounds [11], Zn-IV-N, [12], and transition
metal oxides [6,9,13]. The causes for these errors were
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attributed to the lack of vertex corrections [12] or to the
underscreening by the random-phase approximation [11]
(RPA), and in both cases a simple empirical correction was
adopted to improve the theoretical calculations (such as
scaling the final self-energy . by about 80%, obtaining
the so-called 0.83 approximation [12]).

The study of electronic correlation and its effects on the
band structure of solids has a very long tradition. A much
less studied subject is, instead, the influence of phonons on
the quasiparticle spectrum. Only now, in fact, the high level
of accuracy achieved by electronic structure calculations
makes the phonon contributions larger than the theoretical
precision.

There exist two contributions to the band gap coming
from phonons. (i) The electron-phonon coupling, that can
be handled according to the Allen-Heine-Cardona theory
[14] using second-order perturbation theory within the
harmonic and adiabatic approximations. One obtains two
terms of the same order to be included in the GW self-
energy, known as the Fan and Debye-Waller terms. (ii) The
phonon contribution to the frequency-dependent dielectric
function, which can be a sizable component of the total
electron screening in polar compounds.

The electron-phonon coupling terms are responsible for
the strong reduction of the band gap of diamond. In fact,
in that case the zero-point contribution to the band gap was
proved by Giustino et al. [15] to be 0.6 eV. They observed
that the example of diamond is an extreme case, while for
most semiconductors and insulators the zero-point renor-
malization is as small as 10-50 meV [15] and can be safely
neglected. The Fan and Debey-Waller terms have also been
used to determine the temperature dependence of the band
gap of semiconductors [16].

In this work we want to focus on the second, usually
overlooked, contribution of phononic nature: the screening
due to the coupling of the electromagnetic field and the

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.110.226404

PRL 110, 226404 (2013)

PHYSICAL REVIEW LETTERS

week ending
31 MAY 2013

oscillating dipoles [17,18]. Of course, this contribution
exists in polar materials only (and thus it is nonexistent
in diamond). We should emphasize that by “polar” we
mean any material that has non-negligible Born effective
charges, leading to a measurable longitudinal-optical (LO)
and transverse-optical (TO) phonon splitting. Most semi-
conducting and insulating materials known actually fit into
this category. Indeed, polar materials are characterized
by LO and TO infrared-active phonons, whose excitation
induces macroscopic electric fields in the crystal [19].
These fields contribute, together with the electronic screen-
ing, to the total screening of the Coulomb potential, and
their strength is proportional to the bond ionicity.

Already in 2005 Bechstedt et al. [17] observed that the
lattice polarization affects significantly the dressing of the
quasiparticles in ionic materials, inducing large corrections
to the band gap, that they calculated using a model elec-
tronic dielectric function and a static approximation for the
lattice contribution to the screening. Unfortunately, it was
already observed in Ref. [17] that that model always over-
estimates the band-gap correction. In this Letter, we take a
step further and develop a fully ab initio framework to
include the lattice contributions to the screening within the
GW scheme. The basic ingredients are, besides the stan-
dard RPA screening of GW, the LO and TO frequencies
of the infrared active phonon modes. We then calculate the
electronic band structure of a set of polar materials apply-
ing this new scheme, and compare the results with experi-
mental data and with many-body results including only
electronic correlations.

The lattice polarization plays an important role in the
determination of the total screening of polar compounds, as
it is evident from the difference between €., the electronic
dielectric function at zero frequency, and €, the total static
dielectric function including contributions from both elec-
trons and infrared active phonons. The ratio between these
quantities is related to the phonon frequencies at the center
of the Brillouin zone, wy g and wrq, through the Lyddane-
Sachs-Teller relation:

w €
2o -2 (1

The standard treatment of optical phonons in crystals
using the dynamical matrix implicitly assumes that the
interatomic interactions are instantaneous. In the case of
polar crystals, the long-range nature of the Coulomb inter-
action requires a proper account of retardation effects. It is
easy to understand that the coupling of phonon waves and
electromagnetic waves is effective only for ¢ — 0, since
the speed of sound is negligible if compared with the speed
of light. By combining a continuous approximation for the
description of the mechanical waves of the optical modes
and Maxwell’s equations for electromagnetic waves one
obtains the polariton dispersion curves. For a polar crystal
the total dielectric function, which includes electronic and

lattice polarization terms, then reads (here for simplicity in
the scalar form)

€q—0,0)=€l(g—0,0)+e,(g—00), (2

where €.(q — 0, @) is the long wavelength limit of the
electronic contribution to the dielectric function (calcu-
lated, e.g., in the RPA approximation), and €, is defined
as the contribution to the dielectric function due to lattice
polarization. This latter quantity can be related to the
electronic screening by a frequency-dependent generaliza-
tion of the Lyddane-Sachs-Teller relation, that reads

fld — 0,0) = eq— 0,0) 20— @l
1at\q ’ e\q ’ wgro — (w T ”7)2
In this last expression, the infinitesimal n — 07,

In the following discussion, and to keep the notation of
the equations at a reasonably simple level, we will consider
only cubic crystals with two atoms in the unit cell.
However, all the equations can be easily generalized to
arbitrary unit cells with more than two atoms, i.e., more
than one infrared active mode [20].

Equations (2) and (3) can be used directly within the
GW framework without any further approximation.
However, the very large difference between typical phonon
(of the order of the meV) and electronic (of the order of the
eV) frequencies makes the use of methods like the contour
deformation [21] unpractical. We will therefore resort to
the popular plasmon-pole model [2,22] of the GW theory
in order to derive a practical framework to include the
effects of lattice polarization.

For convenience, we now move to the reciprocal lattice
G space and write € as a G, G' matrix. The electronic
plasmon-pole model for €_ (w, g) reads

Qé(;/(q)
w? = [@ge(q) — inl

€.66/(@ ©) = 8ger + 4)
The two parameters QéG, (¢) and @ (q) can be fixed for
example by calculating €. (¢, ) at w = 0 and © = iwp
[22], where wp is the plasmon frequency. In order to
determine the total screening, in the case of ¢ — 0, one
has to evaluate e(_;,lG, (g — 0, w) by inverting the sum of the
two matrices €.(¢ — 0, w) + €,(g — 0, w). The way to
proceed is to apply the matrix equality [23]

1
G+H) ' =G = GTHGT, ()

where
g =Tr{HG™ '}, (6)

and G is an invertible matrix. In our case the matrix G
is €.6,6(¢ — 0, w) and H is €,66(q — 0, ). A useful
simplification comes from the fact that H has only one
nonzero element, the head of the matrix €;,00(q — 0, w).
In the following we will remove the explicit dependence on
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q of the dielectric matrix elements as it is clear that the
lattice polarization contribution exists only for g — 0.
Using (3) in (5) it is easy to show that
et () = €l ()
_ € @)ep (@) of — ol
€. on(®) 0o — (0 +in)?

(7
If we now replace €_;/(w) by the standard plasmon-
pole model (4) [22], we obtain our final expression for
66(1;,(60). The resulting formulas are quite complex but can
be simplified for the head and the wings of the inverse
dielectric matrix, remembering that phonon frequencies
are much smaller than the frequencies of electronic exci-
tations. The head of the inverse dielectric matrix reads

| Q3
€ () =1+ _
0 w? — (Do — ”7)2
1 W, — w?
_ LO TO (8)
€ Wi — (@ +in)?’
where we used
1
€0 = )

B €.00(g— 0, w0 =0)

The matrix elements of the wings have very similar
expressions, thanks to the simplification of e;)})(w) appear-
ing at the denominator in (7):

2
QGO

w? — (@gy — in)?

-1 _
€60 —

w%,o - w%O (1 O)

>

_ 1

feG()(wLO) ‘”%o — (0 + in)z
with an analogous expression for the 0G terms.

The other matrix elements of E&é,(w) are more compli-
cated: besides the extra poles at w = *wj o, there appear
terms involving poles at w = £dgy, ® = £@dyg, and
w = id)oo/Goo.

We can then insert (4) and (7) in the expression for
the screened Coulomb interaction W = €~ lv, where v is
the bare Coulomb interaction. This allows us to evaluate

analytically the convolution integral of the self-energy
3 =iGW

2(q, w) = 2L [m dw'e' G(q, w + 0 )W(g, @), (11)
a — 00

remembering that

Gy = 5 OB )

o~y + imsgn(ey ; — u)’

where ¢, ; are Kohn-Sham or quasiparticle orbitals,
&y,; are the corresponding energies, and w is the Fermi
level.

The frequency integration (11) is performed using the
residue theorem, in strict analogy with the procedure
followed for the electronic screening alone, with the only
difference being that more than one pole is present in the
generalized plasmon-pole model that we derived. Once
again, the full result is rather cumbersome, but a relatively
simple expression is obtained for the lattice contribution to
the matrix elements of 3 when only the head of the matrix
€56 (@ — 0, w) is retained:

2 2
47 wig — Wi

<¢k',j|21at|¢k/,j> = _7 e
O(u — 8k',i)
X z,: (0 — 8k’,i)2 — (w0 — i77)2

ﬁ;;/,ij(q_) O)ﬁk’,ij(q_) 0)
2 b

X lim (13)
q—0 q

with V the volume of the unit cell and py;;(g — 0) =
lim,_ [% drgb,t,’i(r)exp(”'q")<;l>k/+q, ;(r). Note that only
the occupied states contribute to this term due to the
presence of the Heaviside function 0(u — &y ;).

We implemented in ABINIT [24] the complete contri-
bution of the lattice polarization to 3, i.e., the contribution
of the head, wings and body of the dielectric matrix.
However, only the poles at @ = *Zw;g can contribute
significantly to the integral, as the coefficient in front of
the other poles is always extremely small. For all systems
that we studied, the contribution of the head of the matrix
alone is enough to describe the correction to the band
structures within less than 1 meV, but this may not be the
case for noncubic systems.

Our calculations start by the determination of the stan-
dard Kohn-Sham ground state, using the LDA and norm-
conserving pseudopotentials. The LDA Kohn-Sham states
are then used to calculate GW @LDA band structures and
as a starting point for QPscGW runs [8]. There are many
different versions of GW, and consequently there are many
different ways of using 2, in the context of GW. We
chose as starting point a converged QPscGW calculation,
as this is in our opinion the most accurate level of theory
available in ABINIT. However, one cannot use 2, in a self-
consistent scheme, as this would induce contributions of
the lattice polarization in €., in disagreement with Eq. (2).
We therefore decided to apply the corrections due to the
phonons in a final perturbative step, in what we call the
GW" ' @QPscGW method.

In the following, we present calculations for the band
structures of a set of binary compounds: LiF, LiCl, NaCl,
MgO, AIP, AlAs, and GaAs. These are all polar sp mate-
rials, for which perturbative GW gives already good band
gaps, with varied bond ionicities, and band gaps ranging
from 1.52 eV to 14.2 eV. All calculations were performed
with ABINIT [24]. The energy cutoff was set to 50 Ha for
LiF, LiCl, NaCl, and MgO, and to 30 Ha for the remaining
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TABLE I

Calculated band gaps (in eV) for the selected crystals using different GW schemes compared with experimental (exp)

gaps. The experimental values of w; o and wtp (in mHartree) are also given. The experimental references are given in the first column.
The last two rows represent the mean absolute error and mean absolute percentage error.

Lo w10 GW@LDA GW*@LDA QPscGW GW'™@QPscGW exp
LiF [25] 2.99 1.39 13.24 12.05 15.81 13.69 14.20
LiCl [26] 1.74 0.87 8.60 7.97 10.28 9.05 9.4
NaCl [27] 1.21 0.75 7.73 7.14 9.52 8.37 85
MgO [28] 3.29 1.82 6.97 6.38 8.94 7.71 7.7
AlP [29] 2.28 2.01 2.32 2.26 2.79 2.70 2.49
AlAs [30] 1.84 1.65 1.88 1.83 2.34 2.26 2.23
GaAs [30] 1.30 1.22 1.16 1.15 1.52 1.46 1.52
Mean absolute error 0.60 1.04 0.74 0.18
Mean absolute percentage error 11.5% 16.3% 9.4% 3.0%

compounds, and the k-point grids were a 6 X 6 X 6
Monkhorst-Pack. This allowed for a convergence in the
total energy to better than 1 mHartree. The cutoff for
the dielectric constant was set to 5 Hartree, and 142
empty states were used to obtain a convergence in the
energy gaps to better than 0.1 eV. Finally, and in order to
limit the effect of other possible sources of imprecision,
we decided to use for these calculations experimental
lattice constants and experimental LO and TO phonon
frequencies at I' (see Table I). Of course the method can
be easily made fully ab initio by calculating such quantities
within DFT.

In Table I we report the calculated band gaps for the
selected binary compounds using the different GW
schemes. As it is well known, GW @LDA underestimates
the band gaps of s p compounds by slightly more than 10%
while QPscGW overestimates them by about 10% [9].
Turning on the correction due to lattice polarization cuts
down the error of these techniques by a factor of 3, bring-
ing the mean absolute percentage error to 3%. These
results clearly prove that the overestimation of the band
gap by QPscGW is not mainly due to a deficient treatment
of electronic correlation but to a deficient description of
the screening of the medium. We remark that the inclusion
of the lattice contribution to the screening in a GW @LDA
calculation deteriorates the agreement with experiments,
leading to a mean absolute percentage error of 16%. This
shows that the good performance of perturbative GW
calculations for sp polar materials is due to a partial
cancellation of errors: the underestimation of the band
gap opening is compensated by the neglect of the band
gap shrinkage due to the lattice polarization.

In Fig. 1 we display the band structures of LiF obtained
with the different approximations under study. We can
observe that the inclusion of the lattice polarization in
the screening produces a rigid shift downwards of the
conduction bands, with negligible effects on the band
widths and band dispersions. While the same qualitative
behavior is observed for all the materials under study here,

we cannot exclude that other effects may be present in
more complex materials.

Finally, we would like to make two remarks. (i) The
coupling between electrons and phonons in our model is
indirect and comes through Maxwell equations. It is there-
fore completely unrelated to electron-phonon coupling.
(i) To take into account all phonon contributions to the
electronic band structure, both the lattice contribution to
the screening and the Fan and Debye-Waller (and possibly
higher order) terms of the Allen-Heine-Cardona theory
[14] should be included. It is true that for the materials
studied here one does not expect a large contribution from
the electron-phonon coupling, but it is not inconceivable to
find a strong ionic compound with strong electron-phonon
coupling. Note that both contributions will tend to decrease
the purely electronic gap.

exp (14.20 eV)

15.8ev 13.69 eV

13.13 eV

Energy (eV)
o

-

LDA GW@LDA

P
20F T T
——

QPscGW || GW'@QPscGW

L r XL r XL r XL r X

FIG. 1 (color online). Band structure of LiF along the highest
symmetry lines of the Brillouin zone. From left to right:
Kohn-Sham LDA bands, GW@LDA bands, ‘‘standard”
QPscGW bands, and GW!*@QPscGW bands, including lattice
polarization in the screening. The direct band gap value is also
given. The experimental gap is indicated with a horizontal
red line.
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In conclusion, we developed a fully ab initio GW
framework that includes the effects of the screening owing
to the polarization of the lattice. Within this framework we
show that the overestimation of the band gaps by restricted
self-consistent GW techniques is due to the neglect of this
contribution, and we manage to bring the error in the
calculated band gaps to a mere 3%. The lattice contribution
decreases the band gap by a factor that increases with the
size of the longitudinal-transverse optical splitting and it
can represent more than 15% of the band gap in highly
polar compounds. These results call for a reexamination of
many theoretical calculations of the quasiparticle spectrum
for polar materials, including for many oxides, nitrides,
etc. that are important in several fields of technology.
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