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We report results of directional solidification experiments conducted on board the International Space

Station and quantitative phase-field modeling of those experiments. The experiments image for the first

time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under

microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal

the existence of oscillatory breathing modes with time periods of several 10’s of minutes. Oscillating cells

are usually noncoherent due to array disorder, with the exception of small areas where the array structure

is regular and stable.
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Directional solidification of binary alloys leads to the
formation of a rich variety of nonequilibrium interface
patterns that have been widely studied as examples of
pattern formation [1] as well as for their metallurgical
relevance [2,3]. Common solidification patterns are spa-
tially extended arrays of cells or dendrites that form above
the onset of morphological instability. While extensive
experimental and theoretical work during the past several
decades has yielded basic insights into those patterns [3],
their dynamics in three-dimensions (3D) still remains
poorly characterized and understood. In particular, the
third dimension brings the crucial problem of understand-
ing the spatiotemporal organization of space-filling growth
patterns, as highlighted by Thomson [4] and explored since
then in various physical and biological systems [5,6].
Transparent organic alloys have been extensively used to
image in situ the dynamics of the solid-liquid interface [7].
However, fluid convection on Earth leads to large-scale
inhomogeneities of temperature and composition in bulk
samples. Those inhomogeneities strongly influence the
microstructure [8,9] and impede the probing of spatially
extended pattern dynamics under controlled diffusive
growth conditions with constant growth velocity (V), tem-
perature gradient (G), and alloy composition (c1). Hence,
experimental studies of interface dynamics have been
restricted primarily to thin samples where fluid flow is
eliminated [10–15]. In addition, computational modeling
of 3D patterns has remained challenging due to the several
orders of magnitude disparity between capillary and trans-
port scales.

In this Letter, we report the first live observation of
breathing oscillations of spatially extended 3D cellular
arrays obtained by imaging in situ the interface dynamics
under microgravity conditions where fluid flow is

suppressed. Spatiotemporal coherence of cellular arrays
may thus be characterized in relation with ordering of
the cellular array structure. Breathing modes are generic
secondary oscillatory instabilities of spatially modulated
interface patterns [16]. They have been experimentally and
theoretically studied in 2D for both cellular [12,14,17,18]
and two-phase eutectic [19] interfaces. They have also
been theoretically predicted for 3D cellular growth
[20,21]. While those previous experiments exhibited
global spatiotemporal coherence over large domains, the
present microgravity experiments reveal a variety of 3D
breathing modes with limited spatiotemporal coherence.
Massively parallel 3D phase-field simulations, which ac-
cess length and time scales of millimeters and hours,
respectively, allow us to recover salient features of breath-
ing modes and make quantitative comparisons with in situ
observations that yield further insights into their dynamics.
Experiments were conducted on board the International

Space Station in the Directional Solidification Insert devel-
oped by the French space agency CNES in the frame
of the DEvice for the study of Critical LIquids and
Crystallization (DECLIC) project and dedicated to in situ
and real time characterization of the dynamical selection of
the solid-liquid interface morphology on bulk transparent
samples. A succinonitrile-camphor alloy was elaborated by
adding c1 ¼ 0:24 wt% camphor to pure succinonitrile
supplied by the National Aeronautics and Space
Administration. The alloy preparation and crucible filling
were carefully realized under vacuum in order to avoid
humidity contamination. The cylindrical crucible, which is
sealed and inserted inside the Bridgman furnace, has an
inner diameter of 1 cm and a length that enables�10 cm of
solidification, thus allowing the study of the whole devel-
opment of extended cellular patterns from their initial
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formation to the steady state. The crucible is equipped with
a flat glass window at the bottom and a lens immersed in
the melt at the top. We take advantage of the complete axial
transparency of the alloy to image a top view of the inter-
face on a CCD camera. A complete description of the
experimental setup and process appears in Refs. [22,23].
The physical parameters of the alloy are the solute partition
coefficient k ¼ 0:21, liquidus slope m ¼ �1:365 K=wt%,
Gibbs-Thomson coefficient � ¼ 6:48� 10�2 K=�m, an-
isotropy �4 ¼ 0:007 of the solid-liquid interface tension,
and liquid solute diffusivity D ¼ 270 �m2=s (see, e.g.,
Refs. [24,25]).

The successive campaigns of experiments explored awide
range of growth conditions. We focus here on a temperature
gradient (G ¼ 28 K=cm) and a velocity range (V ¼
0:5–1:5 �m=s) for which oscillatory modes were observed.
Oscillations affect small regions of the cell array when V ¼
0:5 �m=s, whereas the whole pattern oscillates for V ¼
1:0 �m=s (see video ‘‘Fig1a_Experiment_FullArray.avi’’
of the Supplemental Material [26]), and breathing ceases in
the final stage of cellular growth at V ¼ 1:5 �m=s. On the
top view images, the oscillating cells are characterized by
a periodic variation of their cross-sectional area AðtÞ in a
plane perpendicular to the growth direction [bright area in
Fig. 1(a)]. The interferometry measurements performed
during the experiments and phase-field simulations show
that oscillations occur both in the vertical z direction, and
in the (x, y) plane, so that both the tip position ztipðtÞ and the
cell area AðtÞ are oscillating functions of time t. Since the
center-to-center distances remain constant, grooves oscillate
laterally. The amplitude of AðtÞ may either stay constant or
increase, in which case cells eventually split into two cells,
then one of these two cells usually oversteps the other and
oscillation resumes. This represents a major difference with
experiments in thin samples where tip splitting was observed
to inhibit oscillations and rather induce a transition to a
doublet structure [14].

We studied the distribution of the oscillation phase of a
large group of cells in order to assess spatiotemporal
coherence [26]. The distribution of phases on the unit
circle shown in Fig. 1(b) reveals a large scatter of phases,
therefore highlighting the absence of global coherence of
oscillations, unlike in thin-sample experiments [14]. Most
generally, adjacent cells do not present particular phase
relation. This lack of coherence is related to the intrinsic
short-range order of extended 3D patterns [see FFT in
Fig. 1(a)] comparable to liquid structures, with numerous
topological defects (number of nearest neighbors � 6).

We generically observed the synchronization of
neighboring cells in areas where local spatial ordering
was maintained long enough, e.g., inside the two squares
in Fig. 1(a) that display hexagonal and square ordering,
respectively. The variations of AðtÞ for the hexagonal pat-
tern are represented in Fig. 2(a). The cells are organized
as three sublattices that oscillate with the same period and a
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FIG. 1 (color online). Spatially extended breathing cellular

pattern observed from the liquid side in an experiment with

V ¼ 1 �m=s and G ¼ 28 K=cm. A top view of a cellular array

is shown in (a). The high spatial disorder of the array is high-

lighted by both the ring-shaped fast Fourier transform (FFT) of

the image (inset) and the large number of array defects (the

number of nearest neighbors of each cell is indicated on the

right-hand side). All cells oscillate with nearly the same period

but different phases. The phases (�) are plotted on the unit circle

on the lower diagrams at two times half a period (�=2) apart with
different colors and symbols, for the experiment (b) and the

simulation (c). The large scatter of phases indicates absence of

global coherence of oscillations. In disordered regions, tempo-

rary synchronization between first-neighbor cells appears in both

experiment and simulation, either with phase opposition [tagged

cells in (b)], or with �2�=3 phase shift [tagged cells in (c)],

which correspond to the basic breathing modes. We provide the

detailed image processing procedures to extract AðtÞ for both

experiments and simulations, as well as videos of the oscillatory

patterns in the joint Supplemental Material [26].
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phase shift of�2�=3. Cells A, B, and C oscillate in phase;
D, E, and F also oscillate in phase but with a�2�=3 phase
shift with respect to the first group, while the central cellG
oscillates with aþ2�=3 phase shift with respect to the first
group. A qualitatively similar �2�=3 mode was found in
previous numerical studies, albeit in the high velocity limit
[20] or with a two-sided phase-field model [21]. We also
observed the mode with � out of phase oscillations within
a local square lattice ordering [e.g., ‘‘square’’ area in
Fig. 1(a)] with the two sublattices of a checkerboard oscil-
lating in phase opposition. However, those breathing
modes lead to a short-range phase coherence that does
not extend beyond neighboring cells.

Even though phase locking is limited to sparse ordered
regions, the oscillation period � is largely insensitive to the
degree of phase coherence and thus remarkably uniform
throughout the entire array. This period is plotted in
Fig. 3 as a function of V and is reasonably well fitted by

the power law � ¼ KV�3=2. The exponent and prefactor
are both similar to those found for breathing modes in
confined 3D experiments [14], despite different alloys

and geometries. In thin samples, confinement imposes
cell arrangement in a row. Yet, for sample thickness above
�25 �m, tip shapes are no longer ribbonlike (2D) but
actually 3D [27]. In both cases, interactions are limited
to first-neighbor spacing since the Péclet number Pe ¼
�V=D with � the cell spacing is of order unity (0:5<
Pe< 1:5 in our experiments). This very likely explains the
similar power law exponent. Lacking experimental data for
other alloys, a possible interpretation is that the agreement
on the prefactor is related to the nature of the solvent
(succinonitrile in both cases).
To gain further insights into breathing modes, we carried

out 3D phase-field simulations using an established quan-
titative approach for binary alloys [27–30]. This approach
renders accessible computations with local equilibrium
at the interface and a diffuse interface thickness W
much larger than the microscopic capillary length d0 ¼
�=½mc1ð1� 1=kÞ� (e.g., W ¼ 85 d0 for the present pa-
rameters at V ¼ 1 �m=s). We performed the simulations
for the physical parameters of the succinonitrile-camphor
alloy given above (see complete details of the computational
model, parameters, and procedures in the Supplemental
Material [26]).
We carried out a first series of simulations in order to

investigate the spatially extended dynamics of cellular
arrays. Those simulations used large rectangular domains
with periodic boundary conditions perpendicular to the
growth direction and tracked the entire transient recoil
and destabilization of an initially planar interface. Those
simulations produced a similar oscillatory behavior of
cellular arrays as in the experiments with a mix of short-
range coherent breathing modes and globally incoherent
oscillations. This is illustrated in Fig. 1(c) where the phases
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FIG. 2 (color online). Short-range correlation of hexagonal
patterns at V ¼ 1 �m=s and G ¼ 28 K=cm. Inside the
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coherently with a mutual phase difference of �2�=3, as shown
in (a). The phase-field simulation in (b) reproduces this coherent
oscillation with a remarkably similar period.
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of a large group of cells are scattered around the unit circle
but some neighbor cells with local hexagonal ordering
display short-range coherence with a �2�=3 mode (tagged
points). As in the experiment, the oscillation period is
uniform over the array, and its average value � � 48:1 min
for V ¼ 1 �m=s is consistent with the experimental period
� � 45:6 min .

We performed an additional series of simulations that
enforced hexagonal ordering in order to investigate the
range of existence of oscillatory modes as a function of
control parameters and cell spacing. First, we simulated the
steady-state growth of one quarter of a cell that was part of
a hexagonal array by using appropriate periodic boundary
conditions [26]. The cell spacing was thus fixed by the size
of the simulation box. The results of such simulations with
varying box size show that steady-state solutions only
exist over a limited range of cell spacings, as shown in
Fig. 4. At low G, the hexagonal branch of steady-state
solutions spans continuously a broad range of spacings.
A gap in this branch, previously found for a different alloy
and control parameters [27], appears for intermediate
values of G, and the rightmost branch disappears at even
higher G. Next, steady-state cells were repeated in a larger
simulation box (3=2 of a cell) with imposed hexagonal
symmetry to study the breathing modes (see details in
Ref. [26]). The results of those simulations show that cell
spacings towards the end of the main (leftmost) branch
display breathing oscillations when a gap is present, and at
higher G, while cells are stable when the gap closed at
lower G. Those modes are temporally sustained for an
extremely narrow range of spacing. The oscillations
generally increase in amplitude over a few periods ending
in cell splitting, as seen experimentally. Figure 2(b) shows
a sustained breathing mode that displays a period of
� ¼ 44:6 mn, which is close to the spatial average over
an extended array both in simulations and experiments at

V ¼ 1 �m=s (Fig. 3). In agreement with the experiments,
the oscillation period in hexagonal arrays decreases with
increasing velocity. Nonetheless, a discrepancy appears
in the power law exponent, which we attribute to uncer-
tainties on physical and/or control parameters. The nomi-
nal parameters that we use here give an onset velocity
of morphological instability Vc ¼ DGk=½ðk� 1Þmc1�
� 0:61 �m=s for G ¼ 28 K=cm, while Vc is lower since
oscillating cells exist at V ¼ 0:5 �m=s in the experiments.
A set of parameters that reduces Vc to 0:35 �m=s repro-
duces a scaling of �ðVÞ, more consistent with the experi-
ments (see Fig. 3). This supports our interpretation that the

behavior �� V�3=2 appears when V is sufficiently higher
than Vc, since the oscillation period diverges as V ! Vc.
In addition, cell spacings tend to be shorter in simulations
for estimated experimental values of G. We expect those
discrepancies to be resolvable by a more accurate deter-
mination of physical and/or control parameters.
Additional simulations with larger box sizes containing

up to 24 cells show that phase coherence is maintained
spatiotemporally over the whole array when the initial
condition corresponds to perfect hexagonal order. Those
simulations further demonstrate that the lack of global
coherence in experiments and simulations is linked to
spatial disorder of the array. Spatial coherence is a com-
paratively longer range for confined thin-sample experi-
ments that produce inherently ordered cellular or eutectic
arrays [12,14,17–19]. Our results show that, even though
local spatial ordering may lead to local coherence of
oscillatory breathing modes, extended spatiotemporal co-
herence will generically not occur in a three-dimensional
configuration. Without specific preparation of the initial
state, both the intrinsic array dynamics and tip splitting
promoted by cell oscillations maintain the array disorder,
thereby inhibiting long-range phase coherence [31]. Those
results highlight a rich interplay between array structure
and dynamics in 3D.
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Billia, and R. Guérin, Phys. Rev. Lett. 87, 166105 (2001).

[9] T. Schenk et al., J. Cryst. Growth 275, 201 (2005).
[10] K. Somboonsuk, J. T. Mason, and R. Trivedi, Metall. Trans.

A 15, 967 (1984).
[11] R. Trivedi and K. Somboonsuk, Acta Metall. 33, 1061

(1985).
[12] P. E. Cladis, J. T. Gleeson, P. L. Finn, and H. R. Brand,

Phys. Rev. Lett. 67, 3239 (1991).
[13] S. Akamatsu, G. Faivre, and T. Ihle, Phys. Rev. E 51, 4751

(1995).
[14] M. Georgelin and A. Pocheau, Phys. Rev. Lett. 79, 2698

(1997).
[15] J. Deschamps, M. Georgelin, and A. Pocheau, Phys. Rev.

E 78, 011605 (2008).
[16] C. Misbah and A. Valance, Phys. Rev. E 49, 166 (1994).
[17] B. Grossmann, K. R. Elder, M. Grant, and J.M. Kosterlitz,

Phys. Rev. Lett. 71, 3323 (1993).
[18] P. Kopczynski, W.-J. Rappel, and A. Karma, Phys. Rev.

Lett. 77, 3387 (1996).

[19] A. Karma and A. Sarkissian, Metall. Mater. Trans. A 27,
635 (1996); M. Ginibre, S. Akamatsu, and G. Faivre, Phys.
Rev. E 56, 780 (1997).

[20] K. Kassner, J.-M. Debierre, B. Billia, N. Noël, and H.
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