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We study the dynamics of small vortex clusters with a few (2–4) corotating vortices in Bose-Einstein

condensates by means of experiments, numerical computations, and theoretical analysis. All of these

approaches corroborate the counterintuitive presence of a dynamical instability of symmetric vortex

configurations. The instability arises as a pitchfork bifurcation at sufficiently large values of the

vortex system angular momentum that induces the emergence and stabilization of asymmetric rotating

vortex configurations. The latter are quantified in the theoretical model and observed in the experiments.

The dynamics is explored both for the integrable two-vortex particle system, where a reduction of the

phase space of the system provides valuable insight, as well as for the nonintegrable three- (or more)

vortex case, which additionally admits the possibility of chaotic trajectories.
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Introduction.—The realm of atomic Bose-Einstein con-
densates (BECs) [1] has offered a pristine setting for
studies on the dynamics of few-vortex clusters [2]. Most
investigations, however, have focused on either a single
vortex or large scale vortex lattices [3–7]. Recently,
theoretical investigations on the study of clusters of 2–4
vortices [8–16] have appeared, chiefly motivated by the
experimental realizations of such states [17–20]. This
focus has heretofore centered on the fundamental building
block of the vortex dipole, i.e., a pair of counterrotating
vortices.

Our aim in the present work is to explore the dynamics
of small vortex clusters of 2–4 corotating (same charge)
vortices. The work of Refs. [2,3] and subsequent efforts
[21] have already paved the way for an understanding of
symmetric few-vortex configurations rotating as a rigid
body and their three-dimensional generalizations, e.g.,
U- and S-shaped vortices, and vortex rings [22]. In this
context, our work presents a rather unexpected twist: we
have found that the usual symmetric corotating vortex
configurations (centered line, triangle, and square) may
become dynamically unstable. Specifically, these states
become subject to symmetry-breaking, pitchfork bifurca-
tions that lead to the spontaneous emergence of stable
asymmetric rotating vortex clusters.

We present our analysis of these features in the inte-
grable (at the reduced particle level) setting of a corotating
vortex pair and illustrate their generality by further con-
sidering a rigidly rotating vortex triplet and quadruplet. In
the first case, we devise a theoretical formulation that not
only explores the instability and its growth rate but also

enables a visualization of a two-dimensional reduced phase
space of the system in which the pitchfork bifurcation
becomes transparent. In the latter cases, we suitably para-
metrize the system, exploring the different regimes of
symmetric and asymmetric periodic orbits. Our theoretical
analysis treats vortices as classical particles, with dynam-
ics governed by ordinary differential equations (ODEs).
This reduction of the original vortex cluster system allows
for the analytical characterization, numerical observation,
and experimental confirmation of the symmetry-breaking
phenomena.
Theoretical analysis.—As shown in Refs. [16,20] and

justified by means of a variational approximation [23],
vortex dynamics governed by the two-dimensional mean-
field Gross-Pitaevskii (GP) equation

i@tc ¼ � 1

2
�c þ 1

2
�2ðx2 þ y2Þc þ jc j2c (1)

can be reduced to a system of ODEs for the vortex posi-
tions. In the original model (1), time and positions are
measured, respectively, in units of !�1

z and the harmonic
oscillator length along the z direction, and � ¼ !x=!z ¼
!y=!z, with !j being the harmonic trap frequency along

the j direction [5]. This ODE reduction is the starting point
for our analysis.
The dynamics of vortex m at position (xm, ym) arises

from two contributions: (i) a position-dependent vortex
precession about the trap center with frequency Sm!pr

and (ii) a vortex-vortex interaction with vortex n that
induces a velocity perpendicular to their line of sight of
magnitude Sn!vort=�

2
mn, where �mn is the distance between
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vortices m and n, Sm and Sn are their respective charges,
and !vort is a dimensionless constant; see Refs. [16,20].
The equations governing the dynamics of N interacting
vortices embedded in a BEC are therefore

_xm ¼ �Sm!prym �!vort

2

X

n�m

Sn
ym � yn
�2
mn

;

_ym ¼ Sm!prxm þ!vort

2

X

n�m

Sn
xm � xn
�2
mn

:

(2)

The precession about the trap center can be approximated
by !pr ¼ !0

pr=ð1� r2=R2
TFÞ, where the frequency at the

trap center is !0
pr ¼ lnðA �

�Þ=R2
TF, � is the chemical poten-

tial, RTF ¼ ffiffiffiffiffiffiffi
2�

p
=� is the Thomas-Fermi (TF) radius,

and A is a numerical constant [4,16,20]. To describe better
the actual vortex dynamics in the trap, the constant !vort

in Eq. (2) may be adjusted to account for the screening
of vortex interactions due to the background density
modulation [24].

We now focus on the corotating vortex (S1 ¼ S2 ¼ 1)
pair. We proceed to adimensionalize Eq. (2) by scaling
(x, y) by RTF and time by 1=!0

pr, and use polar coordinates

ðxn; ynÞ ¼ ðrn cosð�nÞ; rn sinð�nÞÞ. Then, seeking symmet-
ric stationary states r1 ¼ r2 ¼ r� and �1 � �2 ¼ � yields
the rotation frequency for two vortices:

!orb ¼ _�1 ¼ _�2 ¼ c

2r2�
þ 1

1� r2�
; (3)

where c ¼ ð1=2Þð!vort=!
0
prÞ yields a measure of the rela-

tive strength of vortex interaction and spatial inhomoge-
neity. The comparison of the orbital frequency between the
ODE and the GP models is given in Fig. 1(a). Given the
rigidly rotating nature of this state, consideration of �mn ¼
�m � �n renders this state a stationary one; linearizing
around it using rm ¼ r� þ Rm and �mn ¼ �þ �m yields
the following equations of motion for the perturbations
about the symmetric equilibrium:

€Rm ¼ �!2
ep

2
ðRn � RmÞ; €�m ¼ �!2

ep

2
ð�m � �nÞ;

with !2
ep ¼ ðc2=2r4�Þ � ½2c=ð1� r2�Þ2�.

It follows straightforwardly that this squared epitrochoi-
dal (motion of a point in a circle that is rotating about
another circle) relative precession frequency for two vor-
tices changes sign at r2cr ¼

ffiffiffi
c

p
=ð ffiffiffi

c
p þ 2Þ. This signals our

first fundamental result, namely, the destabilization of the
symmetric corotating vortex pair for sufficiently large
symmetric distances of the vortices from the trap center.
A comparison of the ODE and GP models for the orbital
and epitrochoidal precession frequencies for these two
cases is given in Figs. 1(a) and 1(b), showing good agree-
ment between the two. Also, by means of a numerical
Bogolyubov–de Gennes stability analysis in the rigidly
rotating reference frame, we have verified that the relevant
bifurcation is indeed also present in the GP model (results
not shown here).
The instability of symmetric states suggests the potential

existence of additional, asymmetric ones. Seeking rigidly
rotating states with �mn ¼ � and r�1 � r�2 yields

�r�1r�2ðr�1 þ r�2Þ2 þ cð1� r�21 Þð1� r�22 Þ ¼ 0;

which will be the condition defining our radially asymmet-
ric solutions. The mirror symmetry of the two-vortex sys-
tem predisposes toward the pitchfork, symmetry-breaking
nature of the relevant bifurcation, a feature verified by the
diagram of Fig. 1(c). This diagram is given for the angle
� ¼ tan�1r2=r1 as a function of the angular momentum
L0 ¼ r21 þ r22, which is a conserved quantity for our system
[25]. Interestingly, if the single dimensionless parameter
of the system is small (c < 3), then the critical value Lcr

for L0—at which the bifurcation from symmetric to asym-
metric periodic orbits occurs—is supercritical, while if c
is sufficiently large (c > 3), it becomes subcritical [26]
(not shown). Importantly, for the experimental parameters
of this work, the bifurcation is supercritical, and thus the
asymmetric orbits generated by the symmetry-breaking

0 0.5 1

0

0.25

0.5

φ/π

(c)

0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

L
0

θ /
π

(d)

0 0.5 1 1.5 2
0

0.25

0.5

φ/π

(e)

L
0

0 0.5 1
0

2

4

6

8

10
(a)

0 0.2 0.4
0

10

20

30 (b)

FIG. 1 (color online). (a) Orbital and (b) epitrochoidal frequencies for two vortices vs radial position (in rescaled units) from the
center. The solid (blue) line represents results from the ODE and the (red) dots results from the GP model. The vanishing of the latter
signals the onset of instability. Here,� ¼ 0:3538, � ¼ 15:2668, and c ¼ 0:1 for which rcr ¼ 0:3695. (c) Bifurcation parameter �=�,
which equals 1=4 when r1 ¼ r2, vs the square root of the angular momentum for c ¼ 0:1. (d),(e) The corresponding phenomena for
N ¼ 3 and N ¼ 4 vortices for c ¼ 0:1. (c)–(e) Included are a few configurations along the main bifurcation branches [solid (blue) and
dashed (red) lines corresponding, respectively, to stable and unstable configurations] depicting the relative position of the vortices (red
triangles) with respect to the center of the condensate (green crosses).
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bifurcation are dynamically stable. This has been verified
in the full Gross-Pitaevskii model (1), as well as in the
experiments (see below).

To elucidate the pitchfork nature of the bifurcation, we
develop a phase plane representation for all two-vortex
configurations. The integrability of the reduced two-particle
description can be understood on the basis of the fact that
this four-dimensional system has two integrals of motion,
namely, the angular momentum L0 and the Hamiltonian H,
which can be written in polar coordinates as

H ¼ 1

2
ln½ð1� r21Þð1� r22Þ� �

c

2
ln½r21 þ r22 �DÞ�;

where D � 2r1r2 cosð�Þ and � ¼ �2 � �1. Using L0 and
the angle � to express r1 and r2, one can rewrite the
Hamiltonian as a function of (�, �), thereby effectively
reducing the four-dimensional system to a two-dimensional
one. Thus, for different values of L0, we can represent the
orbits in the effective phase plane of (�, �) in which the
different orbits correspond to isoenergetic contours of con-
stant Hð�;�Þ. This is shown in Fig. 2 for values that are
both below and above the critical value of L0 at fixed c.
It can then be inferred that the symmetric fixed point with
ð�;�Þ ¼ ð�=4; �Þ is stable in the former case, while it
destabilizes in the latter case through the emergence of
two additional asymmetric (� � �=4) states along the
horizontal line � ¼ � of antidiametric vortex states.

Remarkably, although the properties of the system dra-
matically change as we go from two vortices to three and

four, the symmetry-breaking bifurcation associated
with the symmetric solutions persists. In particular, when
N > 2, the persistence of the two conservation laws dis-
cussed above is not sufficient to ensure integrability of the
system, and its absence is manifested in a dramatic form in
the resulting six- (N ¼ 3) and eight- (N ¼ 4) dimensional
systems through the presence of chaotic orbits.
Nevertheless, one can still analyze the highly symmetric
rigidly rotating states of the system theoretically.
For N ¼ 3, this state is an equilateral triangle such that

r1 ¼ r2 ¼ r3 ¼ r� and �i;iþ1 ¼ 2�=3, with an orbital fre-

quency predicted as !orb;3 ¼ ðc=r2�Þ þ 1=ð1� r2�Þ. In the

rotating frame, the linear stability analysis around this rig-
idly rotating triangle can be performed, giving rise to an
epitrochoidal frequency !2

ep;3¼ðc2=r4�Þ�½2c=ð1�r2�Þ2�. In
this case, too, a critical radius exists r2cr;3¼

ffiffiffi
c

p
=ð ffiffiffi

c
p þ ffiffiffi

2
p Þ,

such that the symmetric state is destabilized and stable
asymmetric orbits arise past this critical point, as can be
seen in Fig. 1(d). The dynamical picture is considerably
more complicated, but the conservation of the angular mo-
mentum ensures that the dynamical evolution resides on the
surface of a Bloch sphere. We thus define two angular
variables tan� ¼ r2=r1 and cos� ¼ r3=

ffiffiffiffiffiffi
L0

p
and depict

the associated pitchfork bifurcation in Fig. 1(d) for the
subspace of solutions constrained to r1 ¼ r2 and �12 ¼
�23. This bifurcation diagram describes a vortex configura-
tion containing a stable symmetric rotating triangle before
the bifurcation and stable asymmetric rotating triangles
after the bifurcation. In addition to the equilibrium and
near-equilibrium orbits, we observe chaotic orbits arising
both in a more localized form, exploring the vicinity of
equilibrium orbits, and in a more extended one, spanning
all space (not shown).
While the general phenomena for N ¼ 4 are already

rather complex, some basic features can still be inferred
and the symmetry-breaking nature of the proposed insta-
bility persists—cf. Fig. 1(e). Here, � ¼ tan�1r3=r1, and
we have constrained the vortices to be in a cross with right
angles and r1 ¼ r3 and r2 ¼ r4. A general expression for
the orbital frequency of the rigidly rotating state is
!orb;N ¼ ½ðN � 1Þc=2r2�� þ 1=ð1� r2�Þ, which is valid for

any N. In the case of the square configuration with ri ¼ r�
and �i;iþ1 ¼ �=2, there emerge two epitrochoidal vibra-

tional motions with frequencies
ffiffiffiffiffiffiffiffiffiffi��1

p
and

ffiffiffiffiffiffiffiffiffiffi��2

p
, where

�1¼½3c=ð1�r2�Þ2��ð9c2=4r4�Þ and �2¼½4c=ð1�r2�Þ2��
ð2c2=r4�Þ. These, in turn, correspond to two critical points:
one identical to the one given above for theN ¼ 3 case and

one that is always higher, given by r2cr;4 ¼
ffiffiffiffiffi
3c

p
=ð ffiffiffiffiffi

3c
p þ 2Þ;

hence, the symmetry-breaking features persist.
Experimental observations.—We now discuss experi-

mental manifestations of the symmetry-breaking bifurca-
tion and the emergence of asymmetric configurations.
The details of the experimental setup are described

in Refs. [18,20]. We begin with a magnetically trapped
BEC of N � 5–8� 105 atoms in the jF ¼ 1; mF ¼ �1i

   0 π /4 π /2

0

π

π

0.95

(a)

φ

δ

0.97

1.005

1.01

1.2

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4 (b)

      x

y

0.95

0.97

1.005
1.01

1.2

0.69

(c)

φ

δ 0.695

0.708
0.71

0.75

0.9

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4 (d)

      x

y 0.695

0.708

0.71

0.75

0.9

2

0

π

π2

FIG. 2 (color online). (a) Contours from the reduced
Hamiltonian for vortices close to the center of the trap, i.e.,
L0 ¼ 0:16 below critical (L0<Lcr¼0:273), and (b) their respec-
tive orbits in the rotating frame defined by the symmetric
configuration. (c),(d) The same quantities but for vortices further
out from the center for L0 ¼ 0:36 above critical (L0 >Lcr ¼
0:273). The circles and triangles correspond, respectively, to the
initial and final positions of the two vortices. Each color on the
contour plot matches the corresponding orbit in the position
diagram. Here, c ¼ 0:1.

PRL 110, 225301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
31 MAY 2013

225301-3



hyperfine level of 87Rb. The radial and axial trap frequen-
cies are ð!r;!zÞ=2� ¼ ð35:8; 101:2Þ Hz. Vortices are
introduced through a process of elliptical magnetic trap
distortion and rotation [27] during evaporation. In terms
of the trap frequencies along the major and minor axes of
the distorted potential !x and !y, respectively, an elliptic-

ity � ¼ ð!2
x �!2

yÞ=ð!2
x þ!2

yÞ ¼ 0:20 and a rotation fre-

quency of 8.5 Hz usually produces a corotating pair. Higher
rotation frequencies are used to generate larger numbers of
cocirculating vortices.

A partial-transfer (5%) imaging method [18] is
employed to create a sequence of density profiles, as shown
in Figs. 3(a)–3(d). The effect of the extractions is primarily
to diminish the number of atoms in the condensate [15,18].
Atomic losses have little effect on the parameter c, which
scales only as logðNÞ; thus, c falls between 0.11 and 0.10
over the range N¼0:3–0:8�106 atoms. For convenience,
we take c ¼ 0:1 in the following analysis.

We examine 52 experimental time series consisting of
eight snapshots spanning 240 to 480 ms. For each snapshot,
the vortex centers and the radius of the cloud are extracted
using least squares fitting [see Figs. 3(a)–3(h)]. The vortex
positions are then normalized to the BEC radius (i.e., TF
units), and the angular momentum L0 and Hamiltonian H
are computed for each frame [Figs. 3(e)–3(h)]. For each
series, the average angular momentum �L0 and Hamiltonian
�H are determined (horizontal dashed lines in the middle
panels in Fig. 3). Using �L0, we compare the experimental
points representing each orbit in the (�, �) plane to the
isocontour of H corresponding to �H, as shown in the right
column of panels in Fig. 3, finding good agreement
between the two.

Figures 3(a)–3(d) depict typical time series, together with
their respective fits, that exemplify the different qualitative
cases that we observed in the experiments. In particular, the
vortex dynamics depend on whether the average angular
momentum is below or above the critical threshold Lcr ¼
2r2cr. This distinguishes cases in which asymmetric orbits
are, respectively, nonexistent and possible. The different
qualitative cases that we observemay be grouped as follows.

(i) For �L0 < Lcr and relatively small �H, the experiment
displays symmetric orbits [Figs. 3(a)–3(e)].

(ii) For �L0 > Lcr and moderate �H, the experiment dis-
plays (1) orbits where both vortices (in the rigidly
rotating frame) are approximately on the same side
of the cloud chasing each other on the same path
[Figs. 3(b) and 3(f)] or (2) asymmetric orbits
[Figs. 3(c) and 3(g)]. The particular class of orbit
is determined by the initial conditions. Initial con-
ditions inside the area delimited by the separatrix
[red double-loop curves in the right panels of
Figs. 3(f) and 3(g)] emanating from the saddle point
ð�;�Þ ¼ ð�=4; �Þ give rise to asymmetric orbits.

(iii) For �L0 > Lcr and large �H, the experiment displays
orbits in which one vortex remains close to the

center while the other orbits around it close to the
periphery of the cloud [Figs. 3(d)–3(h)].

As is clear from these examples and the remaining 48
data sets (see the Supplemental Material [28]), asymmetric
orbits are found only when �L0 >Lcr and when the vortex
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FIG. 3 (color online). (a)–(d) Typical experimental series for
the dynamics of two corotating vortices (time indicated in ms).
The large (green) circles and the red crosses represent, respec-
tively, the fitted TF radius and center of the cloud, while the
small (yellow) dots depict the fitted vortex centers. The dashed
(red) circles represent the critical radius rcr, above which sym-
metric orbits become unstable. (e)–(h) Manifestation of the
pitchfork bifurcation for the experimental series depicted in
(a)–(d), which correspond to c ¼ 0:1. Left column: experimental
vortex positions and their corresponding orbit from the reduced
ODE model (solid line), in TF units in the rigidly rotating frame.
Middle column: corresponding L0 (blue circles) and �H (green
squares) and their averages (horizontal dashed lines) as well as
the critical value for L0 (solid horizontal line). Right column:
corresponding orbits in the (�, �) plane along with isocontours
for constant H. (Highlighted in dark gray is the isocontour
corresponding to the average H, and in red is the separatrix
delimiting the area containing asymmetric orbits.)
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orbits fall inside the asymmetric minima regions of the
Hamiltonian picture in the (�, �) plane. Asymmetric so-
lutions are absent in all of the cases for which �L0 < Lcr.
These results are in good agreement with the theoretical
prediction of the pitchfork bifurcation depicted in Fig. 1(c).
Note that some of the experimental vortex trajectories,
which are measured over a fixed time interval, span only
a fraction of the full period of their corresponding orbits
[cf. left panel of Fig. 3(f)]; the latter vary in duration and
can become quite long (e.g., close to a separatrix).

To extend our considerations, we briefly present a com-
parison between experiment and theory for N ¼ 3 and
N ¼ 4 vortices. The main phenomena are depicted using
two examples for each case in Fig. 4. Figures 4(a) and 4(b)
correspond to the N ¼ 3 vortex case below and above the
pitchfork bifurcation [see Figs. 4(e) and 4(f)]. Figures 4(c)
and 4(d) depict the equivalent scenario for N ¼ 4 vortices.
As the figure illustrates, and is observed in all of the cases
that we studied (17 data sets for N ¼ 3 and 5 data sets for
N ¼ 4, which are not shown), the main phenomenology for
N ¼ 3 and N ¼ 4 persists in that all configurations with
�L0>Lcr are not symmetric, and symmetric configurations—
or epitrochoidal oscillations about them—are only present
when �L0 < Lcr.

Conclusions.—We have revisited the theme of corotat-
ing few-vortex clusters in atomic Bose-Einstein conden-
sates. By a combination of theoretical analysis, numerical
computation, and experimental observation, we have illus-
trated a strong manifestation of symmetry breaking
through a pitchfork bifurcation, which leads to the desta-
bilization of symmetric solidly rotating configurations and
gives rise to the emergence of stable rigidly rotating but
asymmetric vortex configurations. We showed that this
analysis is fruitful not only for the integrable (at the
reduced particle level) two-vortex setting, where a suitable
parametrization of the phase space was provided, but also

for the nonintegrable cases of N ¼ 3 and N ¼ 4 vortices
where chaotic orbits exist.
Naturally, it would be interesting to provide a more

global characterization of the dynamics of the three-body
problem, which is perhaps the most analytically tractable
and intriguing case due to its potential for chaos. Another
expansion of the present considerations involves their gen-
eralization to higher dimensions. In this case, it would be
interesting to see, upon gradual decrease of the trapping
frequency in the third dimension, whether the symmetry-
breaking phenomena persist for line vortices and vortex
rings. These aspects are presently under consideration, and
results will be reported elsewhere.
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