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Although the equations governing fluid flow are well known, there are no analytical expressions that

describe the complexity of turbulent motion. A recent proposition is that in analogy to low dimensional

chaotic systems, turbulence is organized around unstable solutions of the governing equations which

provide the building blocks of the disordered dynamics. We report the discovery of periodic solutions

which just like intermittent turbulence are spatially localized and show that turbulent transients arise from

one such solution branch.
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Fluids move in a well ordered fashion (laminar flow)
when their velocity is small and in this case the flow field
can usually be analytically derived from the equations of
motion, the Navier-Stokes equations. However, as the
inherent velocity and length scales become large, turbu-
lence sets in and most flows of practical interest are highly
disordered in space and time. Landau and Hopf proposed in
the 1940s that this transition occurs via an infinite sequence
of bifurcations starting from laminar flow [1]. This route to
turbulence, later shown to consist of only a few bifurca-
tions by Ruelle and Takens [2], is a well established
paradigm for transition in many systems. In flow down a
straight circular pipe, however, turbulence arises despite
linear stability of the laminar flow [3], and thus the former
scenario is in principle inapplicable. Moreover, in pipes
just like in many other wall-bounded flows turbulence first
manifests itself in localized spots surrounded by laminar
flow. Although experimental observations of localized
turbulent structures date back to the first comprehensive
investigations of turbulence [3] and their structure and
kinematics have been studied extensively [4], a theoretical
understanding is missing. More recent studies have shown
that turbulent spots (called puffs in pipe flow) are generally
of transient nature and that their decay is memoryless [5,6].
Nevertheless turbulence eventually becomes sustained
once these structures begin to proliferate and their spread-
ing rate outweighs their decay [7]. The Reynolds number
(Re ¼ DU=�, where D is the pipe diameter, U the mean
velocity and � the kinematic viscosity of the fluid) at which
these processes balance marks a phase transition to sus-
tained turbulence. Despite such recent advances, how these
turbulent structures arise from the equations of motion
is unknown.

Numerical studies of flows in short periodic domains led
to the important discovery of invariant solutions of the
Navier-Stokes equations featuring the main ingredients
of the self-sustaining cycle of turbulent shear flows [8].

In pipe flow, the simplest of these solutions are traveling
waves [9], satisfying

vðx; r; �; tÞ ¼ vðx� ct; r; �Þ; (1)

where (x, r, �) are cylindrical coordinates, t time and c the
wave speed. Traveling waves are frozen as they propagate;
i.e., they are relative equilibria. Although all these exact
numerical solutions are unstable, and hence cannot be
directly observed in experiments, the number of unstable
directions is small, so it is expected that they play an
important role in organizing the phase-space dynamics of
turbulence [10]. As traveling waves have no dynamics but
only drift in the propagation direction, more complex
solutions are required to capture the properties of turbulent
flows. The next level of complexity in the hierarchy of
invariant solutions of the governing equations is provided
by relative periodic orbits (RPOs)

vðx; r; �; tÞ ¼ vðx� �cT; r; �; tþ TÞ; (2)

for which the motion appears as T periodic in a frame
comoving at speed �c. Relative periodic orbits bifurcating
from traveling waves [11] and embedded in turbulence
[12] have been recently discovered in short pipes.
Although some aspects of the traveling wave solutions

found in small domains, like the symmetry and the vortex
streak arrangement have also been observed in turbulent
pipe experiments [13], the streamwise structure is qualita-
tively different. While traveling waves are streamwise
periodic, with a periodicity of a few D, all turbulent
structures observed close to onset are localized.
Turbulent puffs have distinct laminar-turbulent interfaces
characterized by a sharp velocity change at the upstream
interface and a slow adjustment downstream. In this Letter,
we present the first localized solutions that contain all
spatial features of turbulent puffs and show how turbulent
transients emerge from them.
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Numerical simulations of pipe flow were carried out
using a spectral code [14] and a hybrid spectral finite-
difference code [15], with excellent agreement between
them. The computational domain was chosen to be long
(40D) with periodic boundary conditions in the streamwise
direction. In such long domains, just like in experiments,
turbulence takes the form of localized puffs and the agree-
ment with experiments even of very subtle features like
lifetime statistics is very good [6].

At first our investigation focused on the laminar-
turbulent phase-space boundary by looking for initial con-
ditions that neither turn turbulent nor relaminarize but
remain in the dividing edge [16]. In long pipes the attractor
in the edge (called edge state) was found to be localized but
at the same time chaotic [15,17] and the dynamics turned
out to be too complex to identify underlying invariant
solutions. Although approaches to nearly periodic dynam-
ics were reported in studies of symmetric invariant sub-
spaces, in long pipes the edge state was always found to be
chaotic [18]. Here we simplified the problem by restricting
the dynamics subject to a �-rotational symmetry with
respect to the pipe axis

½u; v; w�ðx; r; �; tÞ ¼ ½u; v; w�ðx; r; �þ �; tÞ (3)

and the reflectional symmetry

½u; v; w�ðx; r; �; tÞ ¼ ½u; v;�w�ðx; r;��; tÞ; (4)

where u, v, and w are the axial, radial, and azimuthal
velocities, respectively. The reflectional symmetry (4) pro-
hibits rotations about the pipe axis. Note that any solutions
found in the subspace are necessarily also solutions of
the full space and hence represent physical (symmetric)
flow states.

The edge-tracking algorithm is as follows. First, a
localized disturbance is applied to the laminar flow [19]
and if sufficiently strong it evolves into a turbulent puff.
Subsequently, the amplitude of this puff, to which the
laminar parabolic flow has been subtracted, is rescaled to
obtain a new initial condition v� ¼ vIam þ �ðv� vIamÞ,
where � is a constant � 2 ð0; 1Þ, v the velocity field of the
puff and vIam the laminar flow. A simple bisection algo-
rithm is then used to find the value of � for which the
temporal evolution of v� neither relaminarizes nor goes
to turbulence but remains on the edge. The procedure is
illustrated in Fig. 1 at Re ¼ 2200. After an initial transient
the temporal evolution rapidly relaxes onto a periodic
oscillation, suggesting that the edge state is a RPO. Note
that as time evolves new refinement bisection iterations
have to be applied to keep the trajectory on the edge.

A snapshot of the edge velocity field was fed as an initial
guess into a purposely designed Newton-Krylov solver
based on the time-stepping code [14] using standard tech-
niques [11,20] and rapidly converged to a RPO with period
T ¼ 15:0D=U and average drift speed �c ¼ 1:52U. Note
that in order to achieve convergence we require that the

residual r ¼ kvðTÞ � vð0Þk< 10�10kvð0Þk, where the ve-
locity field vðTÞ has been appropriately shifted to account
for drift. Figure 1 shows that the energy oscillations have a
period of T=2. This is due to a spatiotemporal symmetry
possessed by this solution: at t ¼ T=2 the velocity field is
the same as t ¼ 0 but reflected with respect to the plane at
� ¼ 45� (note that the plane of imposed reflection sym-
metry is at � ¼ 0). Figure 2(b) shows a snapshot of the
RPO. The similarity in the topology of its low and high
velocity streaks with those of a turbulent puff [shown in
2(a)] is remarkable. A close inspection of the topology of
streaks and vortices of this solution points at a possible
connection with a stream-wise periodic traveling wave [21]
(D2). We found that at Re ¼ 2200 this traveling wave is
the edge state in short pipes of length � & 5D, whereas in
the range 5 & � & 10D the edge state is chaotic. Although
a localized RPO is obtained as long as � * 10D, for � &
15D the periodic boundary conditions ostensibly interfere
with localization. For the pipe length � ¼ 40D used in the
results presented here, the periodic boundary conditions
have no longer an effect on localization (which was tested
by repeating some simulations for � ¼ 80D).
As the Reynolds number is reduced the localized RPO

(henceforth referred to as LB, which stands for lower
branch solution) keeps fulfilling its role of separating
trajectories that relaminarize from those that increase in
energy towards turbulence. For Re< 1530 trajectories
above the edge no longer result in turbulent transients but
approach instead a stable (within the �-rotational- and
reflection-symmetric space) localized RPO. The visualiza-
tion of this new solution (hereafter UB, standing for upper
branch solution) is shown in Fig. 2(c) and reveals a striking
structural resemblance to turbulent puffs. As pointed out
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FIG. 1 (color online). Dynamics of pipe flow at the edge
(Re ¼ 2200). At t ¼ 0 a disturbance is applied to the laminar
flow and the evolution of kinetic energy (of three-dimensional
Fourier modes) is subsequently monitored. The dashed lines
correspond to flow trajectories that shoot up to turbulence,
whereas the solid lines show trajectories that relaminarize. The
edge-tracking algorithm is applied to obtain trajectories that
hang around on the edge of chaos. The periodic oscillations
shown in the inset (close up) suggest that trajectories on the edge
are attracted to a RPO.
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above, a typical signature of puffs is the sharp transition
from laminar to turbulent flow at the trailing interface
followed by a slow recovery towards the laminar velocity
along its diffuse leading interface [see the black curve in
Fig. 2(d)]. This landmark of puffs is shared by LB (red
curve) and UB (blue curve) and further demonstrates that
the properties of localized turbulence can be captured by
exact numerical solutions of the Navier-Stokes equations.

At Re � 1430 UB merges with LB at a saddle-node
bifurcation [see Fig. 3(a)] and below this bifurcation no
dynamics other than laminar are found. By continuing the
UB towards larger Reynolds number we could identify a
bifurcation cascade leading to turbulent transients. At
Re � 1530 the UB undergoes a Neimark-Sacker bifurca-
tion leading to a stable 2-torus that breaks up into chaos at
Re � 1540. Although at the onset of chaos the attractor
explores only a small portion of the phase space, this
portion grows explosively as Re is increased and the cha-
otic attractor appears to collide with LB at Re � 1545.
This boundary crisis is likely related to the appearance of a
homoclinic tangle on the edge [22]. Beyond this point the
attractor becomes leaky: trajectories can relaminarize after
long transients. Following the ensuing chaotic saddle to
larger Re confirms that turbulence in the subspace origi-
nates at this bifurcation, as illustrated in the phase-space
portrait of Fig. 3(b). We note that similar bifurcation
scenarios but starting from relative equilibria have been
observed in short pipes [23] and in small plane Couette
cells [24], thus lacking the spatial complexity and laminar

turbulent interfaces observed in practice. In these small
cells a chaotic attractor emerges via period doubling bifur-
cations and subsequently leads to transients [24].
The robustness of the RPOs and transition scenario were

tested with respect to spatial resolution and time-step �t.
We used �t ¼ 0:0025D=U and K ¼ �320 axial Fourier
modes, M ¼ �16 azimuthal Fourier modes (for � 2
½0; ��) andN ¼ 40 points in the radial direction.With these
values the solutions are well converged and the bifurcation
points are accurate to better than 0.5%. For lower
resolutions the bifurcations are shifted towards lower Re,
whereas the opposite effect is observed by increasing �t.
Nevertheless, the scenario remains qualitatively unchanged.
Note that in the full space the solutions found here have
several additional instabilities and hence cannot be
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FIG. 2 (color online). (a) Turbulent puff at Re ¼ 1900 and
reflection-symmetric RPOs with �-rotational-symmetry at:
(b) the edge (LB) at Re ¼ 1900 and (c) UB at Re ¼ 1500.
Isosurfaces of streamwise velocity at 0:2U (red) and �0:2U
(blue) are shown. The laminar profile has been subtracted in all
cases to highlight the three-dimensional structure of the flow and
the views have been shrank by a factor of 4 in the streamwise
direction. 40D are shown out of a simulation domain of 50D
(puff) and 40D (LB, UB). (d) Streamwise velocity along the pipe
centerline for the structures in (a)–(c).
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FIG. 3 (color online). (a) A saddle-node bifurcation gives rise
to localized RPOs at Re � 1430: UB is stable up to Re � 1530,
where it undergoes a supercritical Neimark-Sacker bifurcation
leading to a relative 2-torus. Subsequently the torus breaks up to
chaos at Re � 1540 and the chaos becomes transient at Re �
1545. The bars show the variation of energy over a period
(Newton-converged LB and UB) and over long runs (torus and
chaos). LB has a single unstable direction and is the edge state.
(b) Phase portrait of the dynamics at several Re projected onto
a two-dimensional plane defined by the energy (of three-
dimensional Fourier modes) and pressure gradient required
to drive a constant flow rate, normalized with the pressure
gradient of laminar flow. The inset is a close up showing the
UB and torus.
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computed by edge tracking and time stepping. We per-
formed several simulations starting from them but dropping
the symmetry restrictions and observed similar transients.

In summary, we have discovered exact numerical solu-
tions of the Navier-Stokes equations that share structure
and spatial complexity with turbulence at onset. We have
furthermore shown that a bifurcation sequence is respon-
sible for giving rise to transient turbulence. In contrast to
the classical Ruelle-Takens model, in pipe flow chaotic
motion arises locally originating from the discovered
localized solutions. This is a key difference to the much
simpler transition scenarios in linearly unstable flows, such
as Rayleigh-Bénard convection [25] and Taylor-Couette
flow [26], where the bifurcation sequence starts from
the base flow and instability occurs globally in space.
Localized solutions can therefore be regarded as the nuclei
of disordered motion in linearly stable shear flows. It is
likely that in full space chaotic dynamics simultaneously
arises from distinct nuclei and that the corresponding
repellers merge in global bifurcations as Re grows, increas-
ing the complexity of the turbulent transients. One of the
outstanding challenges towards an understanding of the
spatiotemporal complexity encountered in shear flows
close to onset is the identification of the mechanism lead-
ing to spatial localization [27].
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