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Systems of nonlocally coupled oscillators can exhibit complex spatiotemporal patterns, called chimera
states, which consist of coexisting domains of spatially coherent (synchronized) and incoherent dynamics.
We report on a novel form of these states, found in a widely used model of a limit-cycle oscillator if one
goes beyond the limit of weak coupling typical for phase oscillators. Then patches of synchronized
dynamics appear within the incoherent domain giving rise to a multi-chimera state. We find that,
depending on the coupling strength and range, different multichimera states arise in a transition from
classical chimera states. The additional spatial modulation is due to strong coupling interaction and thus

cannot be observed in simple phase-oscillator models.

DOI: 10.1103/PhysRevLett.110.224101

During recent times the investigation of coupled systems
has led to joint research efforts bridging between diverse
fields such as nonlinear dynamics, network science, and
statistical physics, with a plethora of applications, e.g., in
physics, biology, and technology. As the numerical resour-
ces have developed at a fast pace, analysis and simulations
of large networks with more and more sophisticated cou-
pling schemes have come into reach giving rise to an
abundance of new dynamical scenarios. Among these a
very peculiar type of dynamics was first reported for the
well-known model of phase oscillators. Such a network
exhibits a hybrid nature combining both coherent and
incoherent parts [1-4], hence the name chimera states.
The most surprising aspect of this discovery was that these
states exist in a system of identical oscillators coupled in a
symmetric ring topology with a symmetric interaction
function. Recent works have shown that chimera states
are not limited to phase oscillators, but can in fact be found
in a large variety of different systems. These include time-
discrete and time-continuous chaotic models [5,6] and
are not restricted to one spatial dimension. Also two-
dimensional configurations allow for chimera states [7,8].
Furthermore, similar scenarios exist for time-delayed cou-
pling [9], and their dynamical properties and symmetries
were subject to theoretical studies as well [6,10,11]. It was
only in the very recent past that chimera states were
realized in experiments on chemical oscillators [12] and
electro-optical coupled-map lattices [13]. The nonlocality
of the coupling—a crucial ingredient for chimera states—
also suggests an interesting connection to materials sci-
ence; see, for instance, magnetic Janus particles that
undergo a synchronization-induced structural transition
in a rotating magnetic field [14,15]. Nonlocality is of great
importance not only for chimera states, but also for other
dynamical phenomena such as turbulent intermittency
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[16]. Hybrid states were also reported in the context of
neuroscience under the notion of bump states [17]. They
were later confirmed for nonlocally coupled Hodgkin-
Huxley models [18] and may account for experimental
observation of partial synchrony in neural activity during
eye movement [19].

In this Letter, we present evidence that the habitat of
chimera states indeed extends to neural models. This
strongly suggests their universal appearance. Our findings
also show that current knowledge of these hybrid states is
far from being complete: Next to the classical chimera
state, which exhibits one coherent phase-locked and one
incoherent region, we find a new class of dynamics that
possesses multiple domains of incoherence.

We consider a ring of N nonlocally coupled FitzHugh-
Nagumo (FHN) oscillators, whose relevance is not limited
to neuroscience, but also includes chemical [20] and
optoelectronic [21] oscillators and nonlinear electronic
circuits [22]:

duy u o R
R LA N T
& dr Uy 3 13 2R j=;R[ uu(u] Mk)
+ buu(vj - vk)], (1a)
dvk o k+R
W = Uy + [25% + ﬁj:kZ_R[bvu(uj - Mk)

+ by (v, —vy)],
(1b)

where u;, and v, are the activator and inhibitor variables,
respectively [23,24], and &€ > 0 is a small parameter char-
acterizing a time scale separation, which we fix at ¢ = 0.05
throughout the Letter. Depending upon the threshold
parameter a;, each individual FHN unit exhibits either
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oscillatory (la;| < 1) or excitable (|a;| > 1) behavior.
All indices are modulo N. In this study we assume that
the elements are in the oscillatory regime and identical, i.e.,
a;, = a € (—1,1). The form of the coupling in Eq. (1) is
inspired from neuroscience [25-27]. Neuronal networks are
often structured in topologies where strong interconnec-
tions between different neurons are found within a range
R, but much fewer connections exist at longer distances
(see Ref. [27] and references therein). We approximate this
feature by constant coupling with a strength o > 0 within
the R nearest neighbors from both sides, and vanishing
coupling at longer distances. This yields a coupling
radius r = R/N. We stress that chimera states have previ-
ously been found for various types of nonlocal coupling
[1,2,5,13], including exponential coupling functions which
can be derived from adiabatic elimination of an additional
fast, diffusing variable [20]. But the crucial common feature
of all these coupling functions is the nonlocality [28].

As we will demonstrate, another important feature of
Eq. (1) is that it contains not only direct u-u and v-v
couplings, but also cross couplings between activator (i)
and inhibitor (v) variables. For the sake of simplicity, we
model this feature by a rotational coupling matrix

B (b,m buv) _ ( CO'Sd) sinqb) 2
by, by, — sing

cos¢
depending on a single parameter ¢ € [—, 7). Thus, we
can vary four control parameters of a different nature: a
determining the local dynamics, o, R, and ¢ specifying the
coupling.

In the following we address the question of appropriate
choice of the coupling phase ¢ by a phase-reduction
technique in the limit € — 0. In the absence of coupling
the local dynamics is then periodically oscillating

and follows a limit cycle (u = U,(t), v = V,(t)), see
Fig. 1(a), with the approximate period [29]
1 —a?

T=34+(1-a%l ( ) 3

(1= @) In(3— 3)

and two discontinuities at times

3 1 -
t1=7+a+(1—a2)ln( a) and 1, =T.
2 2—a
Here, U,(t) is composed of two distinct solutions of the
differential equation on the slow activator nullcline [29]
du u+a
= 4
dt 1 —u? @
The first is defined for ¢ € [0, ¢,) and satisfies initial con-
dition U,(0) = —2, while the second is defined for ¢ €
[#,, T) and starts from the point U,(¢;) = 2. The corre-
sponding slow v variable is given by V,(r) = U,(t) —
U32(t)/3. In the weak coupling limit o < & < 1, we now
perform a phase reduction of Eq. (1) [30]. Then the dy-
namics of each FHN oscillator is conveniently described

(@ 2F

a=0.5

FIG. 1 (color online). (a) Limit cycle u = U,(¢), v = V,(¢) of
single decoupled FHN oscillator for € — 0. (b) Phase interaction
curve H(y) (red solid) obtained from Eq. (6) and its approxi-
mation (blue dashed) by the partial Fourier sum (8). (c) Phase lag
parameter « as a function of control parameters a and ¢. The
hatched region indicates the parameter range for which we find
chimera states in simulations of Eq. (1) with N = 1000, R =350,
and o = 0.05. The thick black curve for @ = 7/2 is a guide
for the eye.

by a single scalar phase variables 6, € R mod7, which
reflects the position of this oscillator along its unperturbed
limit cycle. The interaction of these phases, to the leading
order, is given by a reduced system

k+R
B e 3 THO-0) - HOL )
j=k—R

where the function

p(t —¢) —[1 - UZ(0]g(r — ¢)
mw——f (- GO0 +a)
2
; 2. cnpltn (6)
is T-periodic and we use the abbreviations
p(t) = U,(t) cosd + V(1) sing, (7a)
q(t) = —U,(t)sing + V() cosg, (7b)
3 3
AT TS Da+r2 2 Gaxna=y O

for notational convenience. The function H(y) typically
has several discontinuities [see solid (red) curve in
Fig. 1(b)], because the FHN model becomes a relaxation
oscillator for & — 0.

In order to find suitable parameter values for the gen-
eration of chimera states, we employ the results of
Ref. [31]. There it was shown that chimera states can be
generically found in systems of the form of Eq. (5) with
H(i) = sin(¢y + «) if the phase lag parameter « is close
to but less than /2. Phase interaction curves H(i)
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corresponding to a FHN oscillator can be qualitatively
approximated by their Fourier series truncated at the first
order

H(y) = % + h§ COS(ZT# l//) + hj sin(27ﬂ- 1,[/)
% + y/(hS)? + (h})? sin(z%T U+ a), (8)

where the Fourier coefficients hy, h{, and hj are given by

e (%)
——f H(z,//)cos< )dt,l/ (9b)
]H(tp)sm( )dz// (9¢)

This yields the following approximate equations for the
phase-lag parameter «

hi
V)2 + ()

cosa = sina =

(P + (1)
(10)

that can be used to pinpoint a region in the parameter plane
(a, ¢), which favors the appearance of chimera states.
Roughly speaking, such states are expected for a pro-
nounced off-diagonal coupling (¢ = 7/2), but not for a
diagonal one (¢ = 0 or ¢ = 7). This prediction is con-
firmed by numerical simulations, see the hatched area in
Fig. 1(c). Indeed, if we choose a = 0.5 and ¢ = 7/2 —
0.1, then for o small enough we obtain a chimera state
shown in Fig. 2, where we used initial conditions randomly
distributed on the circle u? + v? = 4.
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FIG. 2 (color online). (a) Snapshot of the variables u; for
t = 5000, (b) snapshot in the (u;, v;) plane for = 5000 (black
lines denote the nullclines of the FHN system), (c) mean phase
velocities wy, (d) local order parameter Z;. Parameters:
N = 1000, r =0.35, 0 =0.1,a= 0.5, ¢ = 7/2 — 0.1.

Figure 2(a) shows a snapshot of variables u; at time t =
5000. One can clearly distinguish coherent and incoherent
parts, a characteristic signature of chimera states. Elements
that belong to the incoherent part are scattered along the
limit cycle; see Fig. 2(b). The subsystems of this region
perform a nonuniform rotational motion, but neighboring
oscillators are not phase locked. To illustrate this, Fig. 2(c)
shows mean phase velocities for each oscillator calculated
as w, = 27M, /AT, k= 1,..., N, where M, is the num-
ber of complete rotations around the origin performed by
the kth unit during the time interval AT. The values of w;
lie on a continuous curve and the interval of constant w,
corresponds to the coherent region, where neighboring
elements are phase locked. This phase velocity profile is
a clear indication of chimera states and similar to the case
of coupled phase oscillators.

The spatial coherence and incoherence of the chimera
state can be characterized by a real-valued local order
parameter [5,11]

Z, = | Y e, k=1..,N 1D

28 |j—kl=6

where ©; = arctan(v;/u;) denotes the geometric phase of
jth FHN unit. We use a spatial average with a window size
of & = 25 elements. A local order parameter Z;, = 1 indi-
cates that the kth unit belongs to the coherent part of the
chimera state, and Z is less than 1 for incoherent parts.
Figure 2(d) depicts the local order parameter in the time
interval ¢ € [1000, 5000], where bright (yellow) color
denotes the coherent regions.

For further investigation we fix the values of parameters
a=0.5and ¢ = 7/2 — 0.1 and vary radius r and strength
o of the coupling. In previous works, where nonlocally
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FIG. 3 (color online). Stability regimes for chimera states with
one (gray, red), two (dark-gray, green), and three (blue, black)
incoherent domains in the plane of coupling radius r and
coupling strength o. Other parameters as in Fig. 2. Hatched
regions denote multistable regimes. Insets show typical profiles
of the mean phase velocities. Black squares (A) and circles (B)
denote parameter values for the transition scenarios shown in
Fig. 4.
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FIG. 4 (color online).

31 MAY 2013
©2 IRE T 25[r=032 0=004
§ e . _/-\_
2
() 2 r=029 0=0.13
§ _m
2
(&2 r=0266 o©=0202
S
2
(h) 2 DS r=025 0=0.25
S 25
§< . . 2
il S “H”
2 = 2.4 § =
1 k 1000 1 k 1000

Transition from a classical chimera state with one incoherent domain to multichimera states with two (a)—(d),

and three (e)—(h) incoherent domains. In each panel the left column shows snapshot of variables u, and the right column shows the
corresponding mean phase velocities. Coupling radius and strength follow the black squares (A) in Fig. 3 for panels (a)—(d) and black
circles (B, ¢ = —3r + 1) in Fig. 3 for panels (e)—(h). Other parameters as in Fig. 2.

coupled phase oscillators, discrete maps, Rossler and
Lorenz systems were considered, chimera states were
reported for intermediate coupling radii and small coupling
strengths [5,6]. Figure 3 displays the stability diagram for
chimera states in nonlocally coupled FHN systems in a
similar parameter range. The gray (red) region corresponds
to the classical chimera state with one incoherent domain.
Surprisingly, for increasing coupling strength, we observe
qualitatively new types of chimera states, which have two
or even three incoherent domains indicated by the dark-
gray (green) and black (blue) regions, respectively. We call
these states multichimera states. Their additional spatial
modulation cannot be explained in terms of phase interac-
tion only [9]. Near the borders of the different regimes,
multistability is found and indicated by hatching. In this
region of coexistence of one and two (or one and three)
incoherent domains the particular realization depends on
the choice of initial conditions.

The transition from the classical to the multichimera
state is illustrated in Fig. 4. Following the lines with black
squares (A) and black circles (B) in Fig. 3, Figs. 4(a)—4(h)
demonstrate how multichimera states with two and three
incoherent domains develop from the classical chimera
state with one incoherent part. The velocity profile shows
a dip, which becomes more pronounced as o increases and
eventually reaches down to the level of the coherent part.
For smaller coupling radii, Eq. (1) exhibits increasing
multistability. There we also find chimera states with
more than three incoherent parts, but these states have
relatively small stability domains and are visible for large
system sizes N only.

In conclusion, we have reported the existence of chimera
states for relaxation oscillators, which are of slow-fast type

and exhibit a time scale separation between activator and
inhibitor. Applying a phase-reduction technique, we have
identified nonlocal off-diagonal coupling to be a crucial
ingredient for the occurrence of these hybrid states that
exhibit coexistent coherent and incoherent domains. Our
findings corroborate the universal existence of chimera
states, which were previously reported for phase oscillators
and time-discrete or time-continuous chaotic systems.
Furthermore, we have found a new type of multichimera
states that consist of multiple domains of incoherence.
They appear as a result of strong coupling interaction and
thus cannot be found in simple phase models. Such multi-
chimera states are of generic nature and can also be found
for other nonlocal coupling functions; see Supplemental
Material [28]. The fact that multichimera states with
increasing numbers of incoherent domains appear succes-
sively with decreasing range of coupling (cf. Fig. 3) is
reminiscent of the appearance of successive coherence
tongues of increasing wave numbers in rings of time-
discrete or time-continuous chaotic systems, where it has
been related to the scaling behavior of the spatial profiles
with rescaled space variable and coupling range [6,13].
This will be a promising direction of future research.
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