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We provide the first experimental demonstration of defect states in parity-time (PT ) symmetric mesh-

periodic potentials. Our results indicate that these localized modes can undergo an abrupt phase transition

in spite of the fact that they remain localized in a PT -symmetric periodic environment. Even more

intriguing is the possibility of observing a linearly growing radiation emission from such defects provided

their eigenvalue is associated with an exceptional point that resides within the continuum part of the

spectrum. Localized complex modes existing outside the band-gap regions are also reported along with

their evolution dynamics.
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Defects play a crucial role in determining the physical
and chemical properties of solids [1]. In semiconductor
crystals, the presence of defects leads to both bulk and
surface electronic states that ultimately affect charge trans-
port processes. When analyzed from the viewpoint of their
corresponding band structure, such localized quantum
eigenstates are known to reside within the forbidden
energy gaps. In optics, similar effects are also possible in
photonic crystal arrangements which have been so far
exploited to realize high quality dielectric waveguides
and cavity resonators [2–4]. In most cases, such defect
modes have been investigated within the context of
Hermitian systems. Yet, much less is known about the
physics and properties of defects in non-Hermitian
periodic configurations where the vector space is no longer
orthogonal but is instead skewed. In the optical domain,
non-Hermiticity can be readily introduced through either
amplification or loss. Such arrangements include, for
example, defect mode lasers in photonic band-gap crystals
[5], photonic crystal fiber amplifiers [6], and semiconduc-
tor distributed-feedback lasers [7]. The spectrum of these
latter systems is in general complex, allowing only some
of the modes to enjoy amplification.

Lately, the notion of parity-time (PT ) symmetry has
been introduced in optics as a new paradigm to mold the
flow of light [8,9]. This idea, which originated within the
context of quantum field theories [10,11], has led to new
strategies in achieving a harmonic interplay between opti-
cal gain and loss. In general, a necessary (but not sufficient)
condition for an optical structure to be PT symmetric is
that its complex refractive index distribution satisfies the
condition nðxÞ¼n�ð�xÞ, in which case the real part of the
index profile is expected to be symmetric in space while
the imaginary component (gain-loss) is antisymmetric.
Optical systems endowed with this symmetry are known
to exhibit altogether real spectra. PT symmetry can lead

to unusual and previously unattainable light propagation
features [9,12–24]. These include double refraction and
band merging [8,12], abrupt phase transitions and power
oscillations [16,17], unidirectional invisibility [23] and
nonreciprocal propagation [19], as well as coexistence
of coherent lasing-absorbing modes and mode selection
in PT -symmetric lasers [9,20,21]. Quite recently, light
transport in large-scale temporal PT -symmetric mesh
lattices has been reported [12,13]. Given that the band
structure of a PT -symmetric lattice can be entirely real,
one could ask in what fundamental ways the properties of
a defect state will be altered in such a pseudo-Hermitian
environment.
In this Letter, we report the first experimental observa-

tion of defect states in PT -symmetric lattices [Fig. 1(a)].
We demonstrate the transition from stable to exponentially
growing bound modes while their localization properties
remain preserved. Furthermore, we show that for a defect
state in its broken symmetry regime, the corresponding
eigenvalue does not necessarily have to reside within the
band gap region—as in conventional Hermitian periodic
structures. Finally, at PT threshold, we observe a stable
parity-time symmetric defect mode that constantly emits
coherent radiation to the surrounding lattice at a linear
growth rate.
The experimental setup in Fig. 1(b) [12,25,26] consists

of two loops of optical fiber which are connected by a
50:50 coupler. A length difference of �L between the
loops enables a temporal advancement or delay of the light
pulses in every round trip [26,27]. The required refractive
index distribution in this arrangement is realized using a
phase modulator in one of the loops. Additionally, the
antisymmetric imaginary part of the photonic potential is
implemented by temporally switching gain and loss
between the two loops. A comprehensive technical docu-
mentation is provided in the Supplemental Material [25].
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One can show that the resulting pulse dynamics in this
system is governed by the following difference equations
[12,26]:

umþ1
n ¼ 1ffiffiffi

2
p ~Gðnþ 1Þ12ð�1Þmðumnþ1 þ ivm

nþ1Þ;

vmþ1
n ¼ 1ffiffiffi

2
p ~GðnÞ�1

2ð�1Þmðiumn�1 þ vm
n�1Þei~’ðnÞ:

(1)

Here, umn and vm
n are the amplitudes of light pulses

circulating in the short and long loop, respectively. m
corresponds to the number of round trips and n accounts
for the transverse temporal position of a pulse. As indicated
in Ref. [25], Eqs. (1) can be transformed into standard form
associated with mesh lattices [13].

The phase potential ~’ðnÞ ¼ ~’pðnÞ þ ~’dðnÞ consists of a
periodic part

~’p ¼
�þ’p for modðn; 4Þ ¼ 0; 1
�’p for modðn; 4Þ ¼ 2; 3

;

and the phase defect ~’dðnÞ which takes the value ’d for n
within the defect and is 0 elsewhere.

In our setup, from one round trip to another, gain and
loss alternate between the loops. In general, the gain factor
~GðnÞ ¼ Gp þ ~GdðnÞ itself can depend on n: ~GdðnÞ takes
the value Gd for n inside the defect and is 0 everywhere
else, thus creating a defect in the imaginary part of the
effective potential. In the experiment, the same transverse
profiles for the gain and phase potential are used for every
loop round trip m.

Before introducing defects in a PT -symmetric optical
mesh lattice, we first investigate the corresponding passive
Hermitian system [28]. Consider an elemental phase
defect ’d at positions n ¼ f0; 1g in a passive environment
(Gp ¼ 1) where no background potential is present

(’p ¼ 0). In the absence of a defect, the band structure

[13] has two connected bands, with the photonic band gaps
positioned above and below [Fig. 2(a)] in its reduced
Brillouin zone. This can be obtained via a plane wave

ansatz of the form eiQn=4ei�m=2, where Q and � represent
the transverse Bloch momentum and propagation con-
stants, respectively. Such calculations are explained in
detail in Refs. [13,25]. The propagation of light pulses in
this configuration is classically analogous [26] to a quan-
tum walk [27–30], as can be seen in Fig. 2(c). Depending
on the defect phase ’d, either one or two localized modes
can exist inside the band gap [Fig. 2(b)]. In our experiment,
we inject a single pulse into the long loop which is then
monitored during propagation. A convolution of this
deltalike impulse with the localized defect states as well
as any continuum modes within the bands determines
the weights of mode excitation. In the Hermitian system,
the strength of each mode remains invariant during
propagation. As defect modes are indeed excited, we
observe a clear localization of light along the phase defect

FIG. 2 (color online). Phase defect in a passive mesh lattice.
(a) The band structure of the empty lattice (Gp ¼ 1, ’p ¼ 0)

relates the transverse wave number Q and the propagation
constant �. The yellow (shaded) regions denote band gaps
[13]. (b) Dispersion curves of the defect modes as a function
of the defect phase ’d. Experimental results for the evolution of
a single pulse in this lattice with a phase defect of strength ’d

where (c) ’d ¼ 0 (no defect), (d) ’d ¼ 0:3�, (e) ’d ¼ �. The
total phase potential ~’ðnÞ is also indicated for each case. In all
cases only data from the short loop (umn ) are displayed [25].

FIG. 1 (color online). (a) Equivalent spatial waveguide mesh
lattice corresponding to the temporal fiber loop scheme used in
the experiments shown in (b). Red (light gray) and blue (dark
gray) waveguides indicate balanced regions of gain and loss
while transverse 50% coupling takes place where waveguides
come close. A pair of waveguides with a different gain-loss
contrast and/or phase shift acts as a defect. (b) Coupled fiber
loops used in the experiment. PM: phase modulator.
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[Figs. 2(d) and 2(e)]. For ’d ¼ �, an oscillatory intensity
pattern reveals the presence of two defect modes which
continuously interfere with each other. The period of this
beating in Fig. 2(e) is close to 10 steps in m, which is
compatible with the difference between the two associated
propagation constants ��d � 0:4� ¼ ð2=10Þ2� [31].

A more complex behavior arises when the same defect
is introduced into a PT -symmetric mesh lattice having
a balanced optical gain-loss profile (Gp ¼ 1:3) and a

periodic phase (refractive index) potential (’p ¼ 0:2�).

Given that the periodic lattice parameters Gp and ’p

were chosen to be below the PT threshold of this

lattice [lnðGpÞ<cosh�1½2cosð’pÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2’pÞ

q
� ] [12,13],

in the absence of a defect, the band structure of this
non-Hermitian system is entirely real [Figs. 3(a) and 3(c)].

In this manner none of the Floquet-Bloch modes can grow
exponentially. In what follows, wewill only consider defects
that satisfy the PT condition of nðxÞ ¼ n�ð�xÞ in the
entire system (lattice plus defect).
We now introduce a similar phase defect into a PT

lattice while the imaginary part of the combined PT
potential remains completely periodic. As predicted by
our theoretical results, [Fig. 3(b)], a transition between
almost stable localized modes with real propagation
constants and exponentially growing bound states with
complex eigenvalues is possible, which is in fact observed
[Figs. 3(d) and 3(e)] in our experiments. Indeed, in the
latter case, a pair of defect modes with broken PT
symmetry (complex eigenvalues) emerges. Remarkably,
this transition happens when increasing the defect potential
’d while the gain-loss Gp and background potential ’p

are kept constant, see Fig. 3(a). This is counterintuitive
given that for a homogeneous lattice, such an increase
in the optical potential’s real part typically leads to
stabilization [12].
Thus far, the propagation constants �d of the bound

defect modes were all found to lie within the band gap of
the periodic structure, thus prohibiting any coupling to
phase-matched free propagating radiation modes. Note
that the only way bound states can exist inside the contin-
uum of bands (in Hermitian systems) is when they are
totally decoupled from their surroundings by virtue of
some special symmetry [32,33].
As we will see, in stark contrast to Hermitian systems,

in the case of PT lattices defect states with complex
eigenvalues can also appear within the band continuum.
If a defect possesses an imaginary Gd component (in
addition to the real part ’d) which differs from the
periodic gain-loss Gp profile, then it is possible to estab-

lish localized modes having propagation constants whose
real parts Reð�dÞ are located inside the bands. In this
regime, the inherent gain of the system compensates for
light leaking away (because of phase matching) into
lattice radiation modes. These defect modes have a non-
zero imaginary part Imð�dÞ that reveals itself through
exponential growth or decay. Despite the fact that their
coupling to the continuum is not inhibited, these PT
localized states still decay exponentially on both sides.
Essentially, this exponential localization is a direct out-
come of the exponential increase a defect mode experi-
ences in time.
In order to observe such defect states in optical mesh

lattices, we introduce a broad PT -symmetric defect in a
background empty lattice (Gp ¼ 1 and ’p ¼ 0). The de-

fect region extends over 14 discrete positions n and pos-
sesses a gain-loss contrast of Gd ¼ 1:3 and a defect phase
of ’d ¼ 0:2�, see Ref. [25]. This extended defect allows
one to observe these effects at experimentally attainable
gain-loss values. According to the dispersion diagram of
Fig. 4(a), this lattice can in general support several defect

FIG. 3 (color online). Phase defect in a PT -synthetic lattice.
(a) Real band structure of the background PT lattice (below
threshold) with a gain-loss Gp ¼ 1:3 and a phase potential

’p ¼ 0:2�. (b) Dispersion diagram of defect states as a function

of defect phase ’d. Here, real and imaginary parts are shown
in blue (dark gray) and red (light gray), respectively.
(c) Measurement of single pulse evolution when ’d ¼ 0 (no
defect) and for (d) ’d ¼ 0:3�. In this last case, bound modes
with real propagation constants �d are observed. (e) Increasing’d

to 0:6� brings a pair of bound modes above the PT threshold.
The real ð~’ðnÞÞ and imaginary ð ~GðnÞÞ parts of the PT potentials
as well as the evolution of the total power are indicated.
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modes. In the range of 0< j’dj< 0:5�, a pair of defect
states with complex conjugate eigenvalues (one growing
while the other one decaying) is found to exist in spite
of the fact that their corresponding real part resides inside
the band continuum. In our experiment, by choosing
’d ¼ 0:2� we clearly observe this weakly localized expo-
nentially growing defect state [Figs. 4(b) and 4(c)]. When
increasing the defect’s real potential ’d to 0:8�, this pair
of complex defect eigenmodes migrates into the band gap
thus becoming tightly bound to the defect site [Fig. 4(d)]
while it still grows or decays exponentially.

Even more surprising is how in this same structure, the
gain-loss coefficient Gd ultimately affects the properties of
these complex defect states. According to Fig. 5(a), when
Gd decreases (for ’d ¼ 0:2�), the defect eigenvalue spec-
trum becomes again real and hence the total energy in the
lattice remains bounded. However, right at the transition
threshold which corresponds to Gd ¼ 1:25, the mode is no
longer exponentially localized and the total light power in
the lattice now grows linearly while the rest of the defect
eigenvalues are still real [Fig. 5(b)]. In this case, the pulse
intensity within the active defect region oscillates around a

stable mean value, while the structure constantly emits
optical power toward both sides, see Figs. 5(c) and 5(d).
This can be understood from Fig. 5(a) which clearly indi-
cates the presence of an exceptional point within the band.
Here a transition occurs between a pair of radiation modes
(with real eigenvalues) and two localized complex modes
endowed with a finite norm. Therefore, it is possible
to create a continuously emitting coherent light source
within a photonic lattice by embedding an appropriately
designed gain-loss defect, as demonstrated in our experi-
ment [Fig. 5(c)], which indeed confirms a linear growth of
total light power [Fig. 5(b)]. Note that a similar behavior
occurs in active Fabry-Perot cavities when operated at lasing
threshold; in this regime, when gain is exactly equal to the
total loss, power remains constant within the cavity while
coherent laser light constantly flows toward the outside
environment, with the total energy growing linearly [34].
In conclusion, we have investigated, both theoretically

and experimentally, the properties of complex defects in
PT -symmetric optical lattices. We have shown that
defect modes in such structures can exhibit extraordinary
characteristics that are by no means attainable in standard
Hermitian systems. Among them is the prospect of
PT -symmetry breaking instabilities and the possibility of
establishing localized complex defect modes with spectra
lying within the band continuum. In such PT -symmetric
environments, not only can light beams be trapped within a

FIG. 5 (color online). A defect mode at its exceptional point
(EP). (a) Dispersion diagram of defect modes existing in the
same structure as in Fig. 4 with ’d ¼ 0:2� and as a function of
Gd. According to this plot the PT threshold occurs at Gd �
1:25. (b) Measured light energy and (c), (d) propagation in short
and long loops at Gd � 1:25, confirming an almost linear growth
in total energy and a continuous emission of power.

FIG. 4 (color online). Defect modes residing in the continuum.
(a) Dispersion diagram of a broad PT -symmetric defect when
embedded into an empty lattice. Apart from several other defect
modes having real eigenvalues and located in the band gap
(yellow [shaded] region), for ’d < 0:5� this structure also
supports a pair of localized modes with complex �d, that lie
inside the continuum. (b) Pulse intensity profiles after m ¼ 70
steps of propagation. (c) Observation of a growing weakly
localized mode in the continuum for ’d¼0:2�. (d) Increasing
’d to 0:8� brings the mode into the band gap, leading to strong
localization.
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defect, but they can also be controlled at will through a
defect parameter—thus altering the respective power emis-
sion characteristics to the surrounding regions. Our results
may lead to new possibilities in judiciously structuring gain
and loss in optical lattices that could in turn be potentially
useful in lasing systems and other optical structures and
devices.
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P. P. Rohde, K. Laiho, M. Štefaňák, V. Potoček, C.
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