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A single neutral atom is trapped in a three-dimensional optical lattice at the center of a high-finesse

optical resonator. Using fluorescence imaging and a shiftable standing-wave trap, the atom is deterministi-

cally loaded into the maximum of the intracavity field where the atom-cavity coupling is strong. After

5 ms of Raman sideband cooling, the three-dimensional motional ground state is populated with a

probability of ð89� 2Þ%. Our system is the first to simultaneously achieve quantum control over all

degrees of freedom of a single atom: its position and momentum, its internal state, and its coupling to

light.
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The investigation and utilization of genuine quantum-
mechanical systems require full control over all relevant
degrees of freedom. Important for applications is the pos-
sibility to initialize the system in a well-defined quantum
state and the capability to strongly couple it to other quan-
tum systems. A paradigm system in this context is a single
atom coupled to a single photon in a high-finesse optical
resonator. In theory, the ideal cavity quantum electro-
dynamics (CQED) situation assumes a pointlike atom at a
fixed position. In practice, however, the motion of the atom
deteriorates any localization. In fact, despite long-lasting
efforts [1,2] with Doppler and Sisyphus cooling [3], cavity
[4,5], feedback [6], electromagnetically induced transpar-
ency [7], and even one-dimensional (1D) Raman sideband
cooling [8], no single-atom CQED experiment has so far
obtained full control over the motional degrees of freedom:
position and momentum.

The residual motion of the atom leads to unpredictable
fluctuations, which are deleterious to nonclassical phe-
nomena [9,10] and which limit the photon emission and
absorption efficiencies and fidelities in coherent quantum
networks [11,12]. Full control over the position and
momentum of single atoms is therefore a long-standing
goal in CQED [13]. It would not only improve existing
experiments but is also of utmost importance for future
research. For example, it is an ideal starting point for the
cavity-based generation of nonclassical states of motion
[14], the transfer of quantum states between atomic motion
and light [15], and the observation of numerous opto-
mechanical effects [16] with single phonons and single
photons [17,18].

In this Letter, we present full control over all degrees of
freedom of a single atom strongly coupled to an optical
resonator. First, the atom is deterministically localized at a
maximum of the cavity field. Second, it is cooled to the
three-dimensional (3D) motional ground state. We empha-
size that the former is indispensable to reproducibly
achieving a constant coupling to the cavity field, while
the latter guarantees a constant light shift for an atom in

an optical dipole trap and therefore a constant atomic
transition frequency.
We realize the ideal CQED situation by trapping a single

atom in a three-dimensional optical lattice with the reso-
nator as one of the lattice axes (Fig. 1). By shifting the
standing-wave potential formed by one of the two other
lattice beams [19], we deterministically localize the atom
at the center of the cavity mode. We use high intensities
along all three lattice directions to obtain trap frequencies
of a few hundred kHz, large compared to the single-photon
recoil frequency of about 4 kHz. The atom is then tightly
confined (spatial extent of the ground-state wave function
&15 nm) to the Lamb-Dicke regime (Lamb-Dicke
parameter � & 0:1) along all three axes [20] such that a
spontaneous emission event most likely does not change
the motional state of the atom. This allows us to implement
Raman sideband cooling to the 3D ground state in a similar
way as has been demonstrated in free space with ensembles
of atoms [21–23], single ions in Paul traps [20,24,25], and
very recently with single atoms in optical tweezers [26,27].
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FIG. 1 (color online). Sketch of the setup geometry. A single
atom (black dot) is trapped at the center of an optical cavity [blue
cones in (a), blue disk in (b)] in a 3D optical lattice that is formed
by one red-detuned (along x̂) and two blue-detuned (along ŷ
and ẑ) retroreflected laser beams [arrows in (a), standing-wave
structure in (b)]. One Raman beam impinges along the cavity
axis (ẑ), and two counterpropagating Raman beams impinge
orthogonally from the side [area between dashed green lines in
(b)], forming an angle of 45� with respect to the x̂ and ŷ axes.
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The experiment starts with the preparation of a cloud of
87Rb atoms in a magneto-optical trap. A running-wave
dipole trap is then used to transfer the atoms to the optical
resonator, where they are loaded into a standing-wave trap
(along x̂) at 1064 nm [19]. We then apply counterpropagat-
ing cooling light perpendicular to the cavity axis (ẑ) and at
45� with respect to x̂ and ŷ. The cooling light is 30 MHz
red-detuned with respect to the F ¼ 2 $ F0 ¼ 3 transition
of theD2 line and has orthogonal linear polarizations. This
leads to intracavity Sisyphus cooling [5] of the atom in all
three dimensions. We collect scattered light with a high
numerical aperture objective and thereby image the atoms.
This allows us to determine their number and position using
an algorithm that evaluates the recorded intensity pattern.
The loading procedure is repeated until a single atom is
detected in the images [28]. In that case, the standing-wave
pattern is shifted along the beam (x̂ axis) such that the atom
is transferred to the center of the cavity mode [19] where
the lattice beams tightly confine the atom in 3D.

The two additional lattice beams have a wavelength of
around 771 nm, blue-detuned from the D1 and D2 lines.
Orthogonal polarization and a sufficient frequency differ-
ence prevent any effect of cross interference on the atoms.
One of the lattice beams impinges along the ŷ axis through
the high numerical aperture objective. The other lattice
beam drives a TEM00 mode of the cavity, detuned by an
odd number of free spectral ranges from the atomic tran-
sition at 780 nm. Therefore, an antinode of the cavity mode
coincides with a node of the standing-wave trap light at the
center of the cavity, such that the atoms are trapped where
the coupling to the resonator is strongest. The coupling
strength at a potential minimum changes along the cavity
axis due to the different wavelengths of the trapping and
cavity field. At a distance of 16:2 �m from the cavity
center, a node of the cavity field coincides with a node of
the trap light, such that atoms trapped at this position
hardly couple to the cavity.

To demonstrate experimental control of the coupling
strength, we load atoms at different positions by shifting
the red-detuned dipole trap along the ẑ axis with a piezo-
mirror. Using a �þ polarized laser beam, we optically
pump the atom to the jF;mFi ¼ j2; 2i state, where F
denotes the hyperfine state and mF its projection along
the quantization axis (ẑ). In this state, the atom is coupled
to the cavity, which is resonant with the Stark-shifted
j2; 2i $ j3; 3i transition, which has the largest dipole
matrix element. Subsequently, the transmission of a weak
probe laser resonant with the empty cavity is measured.
With our cavity parameters ðg0; �; �Þ=2� ¼ ð8; 3; 3Þ MHz,
the presence of a single, coupled atom leads to a normal-
mode splitting and thus reduces the transmission. Here, g0
denotes the theoretical atom-cavity coupling on the
j2; 2i $ j3; 3i transition for our cavity parameters (radius
of curvature 5 cm, separation 485 �m), � the cavity field
decay rate (finesse 6� 104, free spectral range 309 GHz),

and � the atomic polarization decay rate. The beating
between the sinusoidal variation of the effective coupling
strength g and the standing-wave trap along the cavity axis
can be seen in Fig. 2 (black squares, Stark shift 50 MHz),
where the transmission on resonance is shown as a function
of the atomic position along the cavity (ẑ) axis [29–31]. We
observe a sinusoidal modulation of the transmission. The
deviation from the ideally expected oscillation with the
same period but steeper slopes is caused by a position-
dependent optical pumping efficiency and temperature,
which leads to averaging effects in coupling strength and
Stark shift. A shift of the atom along x̂ (red dots in Fig. 2,
Stark shift 100 MHz) and ŷ gives a Gaussian dependence
as expected from the radial profile of the cavity mode.
Because of the loading procedure, the initial distribution of
the atoms in the lattice is determined by their initial
temperature and the beam waist of the red-detuned dipole
trap. We determine the width of this distribution from the
fluorescence images. This gives the error bars in Fig. 2. On
the length scale of the positioning error, the transmission is
nearly constant. We can thus deterministically localize a
single atom at the maximum of the resonator field, where
the atom-cavity coupling is strongest.
The absolute strength of this coupling is determined by

recording the normal-mode spectrum of the atom-cavity
system [32]. For this purpose, we scan the frequency of a
weak probe laser while keeping the frequency of the cavity
fixed. To record the spectrum of the empty cavity, we first
pump the atom to F ¼ 1 such that it is not coupled to the
resonator. Thus, the transmission is a Lorentzian curve
with a full width at half maximum of 5.5 MHz (Fig. 3,
black squares). When the atom is prepared in the j2; 2i
state, we observe a normal-mode splitting (Fig. 3, red
dots). The separation of the two peaks is twice the

FIG. 2 (color online). Transmission through the cavity when
the position of a single, coupled atom is scanned along the cavity
(ẑ) axis (black squares) and along the x̂ axis (red dots). The
transmission is strongly suppressed when the atom is located at a
maximum of the intracavity field. The solid Gaussian (red) and
sine (black) fit curves are guides for the eye. Note that in this
measurement, the atom is not cooled to the ground state.
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atom-cavity coupling constant g. To determine this value,
we fit the normal modes with a theory curve (solid red line)
with g and the atomic detuning as the only free parameters.
From this fit, we find g=2� ¼ ð6:7� 0:1Þ MHz, close to
the theoretical value of g0=2� ¼ 8 MHz (dashed red line).
This again proves that we are able to accurately localize the
atom at the center of the cavity field and that the system is
in the single-atom strong coupling regime of CQED.

After demonstrating the good control achieved over the
position of the atom, we now turn to its motion. In order to
measure the temperature, we use Raman sideband spec-
troscopy. For an atom at low temperature, the sinusoidal
lattice can be approximated by a harmonic potential, lead-
ing to a quantization of the atomic vibrational energy
Efx;y;zg ¼ ðnfx;y;zg þ 1=2Þh�fx;y;zg for each lattice axis [23].

Here, nfx;y;zg is an integer and �fx;y;zg denotes the trap

frequency that depends on the intensity and wavelength
of the lattice light along the fx̂; ŷ; ẑg direction. We drive
transitions between the different motional states using
Raman beams. One of the beams is polarized orthogonally
to the cavity axis and impinges at an angle of 45� with the x̂
and ŷ axes (Fig. 1). Another beam, polarized along the
cavity axis, is counterpropagating to the first one, and a
third, also linearly polarized beam is applied along the
cavity axis. The latter two are detuned by the hyperfine
splitting of 6.8 GHz from the first, while all of them are
red-detuned by 0.3 THz from the D1 line at 795 nm.
Because of this large detuning, the Raman beams lead to
an effective coupling of the two hyperfine ground states
without populating the excited state. The linewidth of
this coupling can be much smaller than the natural line-
width of the D1 transition. Thus, the sidebands can be

spectroscopically resolved and addressed individually
when the intensity of the lasers is low enough and the
duration of the Raman pulse is long enough.
To obtain a sideband spectrum, the atom is optically

pumped to the F ¼ 1 hyperfine state. Subsequently, we
apply the Raman lasers for 200 �s. In order to measure the
population transfer to F ¼ 2, we perform cavity-based
hyperfine-state detection [28,33]. We can thus determine
within 30 �s whether the atomic population has been
transferred to F ¼ 2. The transfer probability after the
previously described intracavity Sisyphus cooling as a
function of the detuning between the Raman beams is
shown in the green (grey) curve of Fig. 4(a), where zero

FIG. 3 (color online). Normal-mode spectroscopy of the atom-
cavity system with the atom trapped in the 3D optical lattice. The
transmission of the cavity is a Lorentzian curve when the atom is
not coupled (black squares and black fit curve), while a resonant
atom leads to a normal-mode splitting (red dots and solid red fit
curve). The slight asymmetry is caused by a small residual
detuning between atom and cavity. The error bars are statistical.
The dashed curve shows the spectrum expected for g0=2� ¼
8 MHz, the value calculated from our cavity parameters.

(a)

(b)

FIG. 4 (color online). (a) Sideband spectrum after intracavity
Sisyphus [green (grey) line] and after sideband cooling (black
line). The statistical standard error of the data is given by the
thickness of the lines. The three peaks at positive detunings
correspond to a transition on the blue sideband for each axis of
the 3D lattice potential (right to left: x̂, ŷ, and ẑ axes). The carrier
peak at the center (dashed blue Lorentzian fit curve) is saturated.
Transitions on the red sideband (negative detunings) are still
observed after Sisyphus cooling [green (grey) line] but nearly
vanish after 5 ms of sideband cooling (black line). (b) Transfer
probability on the red (red squares) and blue (blue dots) side-
bands after Raman sideband cooling. The solid curves are
numerical fits of the sum of three Lorentzian curves, with the
shaded areas indicating the 66% confidence interval. The atomic
temperature after sideband cooling is determined from these fits.
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detuning means a frequency difference that corresponds to
the hyperfine transition frequency. The large peak at the
center of the spectrum is the saturated carrier transition.
At negative detunings, the red sidebands can be seen,
corresponding to transitions that lower the vibrational state
of the atom by one quantum. The three peaks at positive
detunings correspond to the blue sideband for each of the
three lattice axes: the red-detuned dipole trap along x̂ at
0.5MHz and the blue-detuned traps along ŷ and ẑ at 0.4 and
0.3 MHz, respectively. The peaks can be identified unam-
biguously by successively changing the intensity of one of
the lattice beams and then recording the sideband spectrum
(not shown). The central sideband peak (ŷ axis) is lower
and broader than the other two in the depicted long-term
measurement. On shorter time scales, we observe three
peaks of the same height with fluctuating position of the
central peak. This is caused by long-term drifts in beam
pointing along the ŷ axis, where we use a lattice beam with
a much tighter focus due to the limited laser power avail-
able. The probability of a change in the vibrational state by
þ1 (Pblue) or by�1 (Pred) and thus the height of the peaks
in the spectrum is determined by the projection of the
k-vector difference of the involved Raman beams onto
the trap axis and by the population of the different vibra-
tional states n along the respective axis. The ratio between
the red and blue sideband peaks gives an upper bound for
the mean vibrational state �n [8,20,24–27,34]:

�n ¼ Pred

Pblue � Pred

: (1)

Applying this equation to a fit of the green (grey) curve
in Fig. 4(a) gives �nfx;y;zg ¼ f0:19ð5Þ; 0:4ð1Þ; 1:0ð2Þg. This
demonstrates that the intracavity Sisyphus cooling we
use already leads to temperatures well below the Doppler
limit [5] ( �nD � 6–10 for our trap frequencies).

To further reduce the atomic temperature, we use pulsed
Raman sideband cooling. For this purpose, we prepare the
atom in F ¼ 1 and apply the Raman beams for 5 ms with
frequency components that drive transitions on all three red
sidebands. During this interval, a �10 ns long repump
pulse is applied on the F ¼ 2 $ F0 ¼ 1 transition every
200 ns in order to bring any transferred population back to
F ¼ 1, where the cooling cycle can start again. To deter-
mine the effect of the sideband cooling, we perform the
following measurement cycle: We apply a 4.4 ms long
interval of intracavity Sisyphus cooling on the closed
transition. We then record the transfer probability at a
certain Raman detuning, apply sideband cooling, and again
measure the transfer probability at the same detuning. We
repeat this measurement sequence at different frequencies
to record a spectrum immediately before [green (grey) in
Fig. 4(a)] and after (black) sideband cooling. The red
sidebands vanish almost completely, which indicates that
the atom is cooled close to the ground state. To determine
the mean occupation number �n, we fit a Lorentzian to the

carrier [blue dashed line in Fig. 4(a)] and subtract it from
the data [Fig. 4(b)]. We fit the sum of three Lorentzian
curves to the blue sidebands (blue curve) to determine the
width and frequency of the three peaks as well as their
respective amplitudes. Using the same frequencies and
widths for the red sidebands, we determine their amplitude,
again from a least-squares fit to the data (red curve),
which gives �nfx;y;zg¼f0:04ð1Þ;0:02ð1Þ;0:06ð1Þg. Assuming

a thermal distribution, this means that the atom is
cooled to the 1D ground state with a probability of
f0:96ð1Þ; 0:98ð1Þ; 0:95ð1Þg and to the 3D ground state with
a probability of ð89� 2Þ%.
In summary, we have deterministically localized a

neutral atom in a 3D optical lattice at the center of a
high-finesse optical cavity and have cooled it to the
motional ground state of the trapping potential, thus
achieving constant and strong single-atom single-photon
coupling. Our experiment is the first that simultaneously
achieves quantum control over the internal state, position,
and momentum of a single atom and over its coupling to
light. This is an important step in the development of a
truly deterministic light-matter quantum interface [11,12]
with highly improved single-photon absorption and emis-
sion efficiencies. Moreover, the exquisite localization of
the atom now allows us to realize proposals which require
both constant coupling and optical phase stability, such as
the generation of entangled states of several atoms in one
cavity [35–38] or the implementation of cavity-based two-
qubit quantum gates [35,39,40].
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M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G.
Rempe, Nature (London) 484, 195 (2012).

[12] C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe,
and S. Ritter, Phys. Rev. Lett. 110, 140403 (2013).

[13] D.W. Vernooy and H. J. Kimble, Phys. Rev. A 56, 4287
(1997).

[14] H. Zeng and F. Lin, Phys. Rev. A 50, R3589 (1994).
[15] A. S. Parkins and H. J. Kimble, J. Opt. B 1, 496 (1999).
[16] T. J. Kippenberg and K. J. Vahala, Science 321, 1172

(2008).
[17] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).
[18] A. Nunnenkamp, K. Børkje, and S.M. Girvin, Phys. Rev.

Lett. 107, 063602 (2011).
[19] S. Nußmann, M. Hijlkema, B. Weber, F. Rohde, G.

Rempe, and A. Kuhn, Phys. Rev. Lett. 95, 173602 (2005).
[20] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev.

Mod. Phys. 75, 281 (2003).
[21] A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, Phys. Rev.

Lett. 84, 439 (2000).
[22] D.-J. Han, S. Wolf, S. Oliver, C. McCormick,

M. T. DePue, and D. S. Weiss, Phys. Rev. Lett. 85, 724
(2000).

[23] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv.
At. Mol. Opt. Phys. 42, 95 (2000).

[24] F. Diedrich, J. C. Bergquist, W.M. Itano, and D. J.
Wineland, Phys. Rev. Lett. 62, 403 (1989).

[25] C. Monroe, D.M. Meekhof, B. E. King, S. R. Jefferts,
W.M. Itano, D. J. Wineland, and P. Gould, Phys. Rev.
Lett. 75, 4011 (1995).

[26] A.M. Kaufman, B. J. Lester, and C.A. Regal, Phys. Rev.
X 2, 041014 (2012).

[27] J. D. Thompson, T.G. Tiecke, A. S. Zibrov, V. Vuletic, and
M.D. Lukin, Phys. Rev. Lett. 110, 133001 (2013).
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