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Neutrinoless double beta decay, if observed, could distinguish whether the neutrino is a Dirac or a

Majorana particle, and it could be used to determine the absolute scale of the neutrino masses. 136Xe is one

of the most promising candidates for observing this rare event. However, until recently there were no

positive results for the allowed and less rare two-neutrino double beta decay mode. The small nuclear

matrix element associated with the long half-life represents a challenge for nuclear structure models used

for its calculation. We report a new shell-model analysis of the two-neutrino double beta decay of 136Xe,

which takes into account all relevant nuclear orbitals necessary to fully describe the associated Gamow-

Teller strength. We further use the new model to analyze the main contributions to the neutrinoless double

beta decay matrix element, and show that they are also diminished.
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Neutrinoless double beta (0���) decay can only occur
by violating the conservation of the total lepton number,
and if observed it would unravel physics beyond the stan-
dard model (SM) of particle physics and would represent a
major milestone in the study of the fundamental properties
of neutrinos [1]. Recent results from neutrino oscillation
experiments have demonstrated that neutrinos have mass
and that the neutrino can oscillate from one flavor to
another [2–4]. In addition, they show that the neutrinoless
double beta decay process could be used to determine the
absolute scale of the neutrino masses, and can distinguish
if neutrinos are Dirac or Majorana particles [5]. A key
ingredient for extracting the absolute neutrino masses
from 0��� decay experiments is a precise knowledge of
the nuclear matrix elements (NME) for this process. There
is a large experimental effort in the United States and
worldwide to investigate the double beta decay of some
even-even nuclei [1]. Experimental data for two-neutrino
double-beta decay (2���) to the ground state (g.s.) and
excited states already exist for a group of nuclei [6]. There
are no confirmed experimental data so far for neutrinoless
double-beta decay. The prediction, analysis, and interpre-
tation of experimental results, present and expected, are
very much dependent on precise nuclear structure calcu-
lations of corresponding transition probabilities.

Although many experimental efforts such as
MAJORANA and GERDA [1], are investigating the ��
decay of 76Ge there are very encouraging results related to
the �� decay of 136Xe. For a long time only lower limits
for the 2��� half-life were available. Recently, the EXO-
200 collaboration reported a precise measurement of this
half-life of 2:11� 0:04ðstatÞ � 0:21ðsystÞ � 1021 yr [7,8],
and a NME of 0:019� 0:002 MeV�1 [7,8] extracted using

the phase-space factorG2� [see Eq. (1)] from Ref. [9]. This
large half-life would imply a relatively smaller background
for the associated 0��� measurement and EXO. A larger
version of EXO-200 designed for reaching this goal, is
under consideration [1]. The lower limit for the 0��� half-
life reported by EXO-200 is 1:6� 1025 yr [8]. In addition,
the KamLAND-Zen Collaboration reported a 2���
half-life of 2:38� 0:02ðstatÞ � 0:14ðsystÞ � 1021 yr and a
lower limit for the 0��� half-life of 5:7� 1024 yr [10].
Since most of the �� decay emitters are open-shell

nuclei, many calculations of the NME have been per-
formed within the pnQRPA approach and its extensions
[11–13]. However, the pnQRPA calculations of the more
common two-neutrino double beta decay half-lives, which
were measured for about 10 cases [6], are very sensitive to
the variation of the gpp parameter (the strength of the

particle-particle interactions in the 1þ channel) [14,15],
and this drawback persists in spite of various improve-
ments brought by its extensions, including higher-order
QRPA approaches [13]. Although the QRPA methods do
not seem to be suited to predict the 2��� decay half-lives,
they use the measured 2��� decay half-lives to calibrate
the gpp parameters, then use them to calculate the 0���

decay NME [12]. Another method that was recently used
to calculate NMEs for most 0��� decay cases of interest
is the interacting boson model (IBM-2) [16]. However,
a reliable IBM-2 approach for 2��� decay is not yet
available.
Recent progress in computer power, numerical algo-

rithms, and improved nucleon-nucleon effective interac-
tions, made possible large-scale configuration-interaction
(CI) calculations (also known as shell-model calculations)
of the 2��� [17–20] and 0��� decay NME [21,22].
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The main advantage of the large-scale shell-model calcu-
lations is that they take into account all of the many-body
correlations for the orbitals near the Fermi surface. Also,
they are less dependent on the effective interaction used, as
long as they are based on realistic nucleon-nucleon inter-
actions with minimal adjustments to the single-particle
energies and some two-body matrix elements so they
reproduce general spectroscopy of the nuclei involved in
the decay [22]. Their main drawback is the limitation
imposed by the exploding CI dimensions even for limited
increase in the size of the valence space used. The most
important success of the large-scale shell-model calcula-
tions was the correct prediction of the 2��� decay half-
life for 48Ca [17,23]. In addition, the CI calculations do
not have to adjust any additional parameters; i.e., given the
effective interaction and the Gamow-Teller (GT) quench-
ing factor extracted from the overall spectroscopy in the
respective mass region, they are able to accurately predict
the 2��� decay half-life of 48Ca.

CI methods provide realistic many-body wave functions
(w.f.) for many nuclei from 16O to 100Sn and beyond. These
wave functions can describe observables related to specific
experiments, e.g., for nuclear astrophysics and electroweak
interactions with the nucleus. The minimal valence space
required for 136Xe involves the 0g7=21d5=21d3=22s1=20h11=2
orbitals for protons and neutrons (the jj55 model space).
There are no spurious center-of-mass (c.m.) states in the

jj55 model space since the c.m. operator ~R does not
connect any of the orbitals. The key is to obtain effective
interactions (EI) that can provide energies and wave func-
tions in the jj55 model space that are at a similar level of
accuracy as those obtained for the sd shell [24] and for the
pf shell [25]. The CI �� decay NME have been reported
[18,21,26] with continuous improvements of the EI. These
calculations indicate a significant sensitivity of the results
to the improving EI. For example, the quenching factor
used to describe 2��� NME varies from 0.74 [18] to 0.45
[26], and the 0��� NME varies by a factor of about 3
between Ref. [18] and the more recent Ref. [21]. One of the
drawbacks of model spaces such as jj55 is that in order to
maintain center-of-mass purity they do not include the
spin-orbit partners of orbitals such as 0g7=2 and 0h11=2.

The known effect is that the Ikeda sum rule is not satisfied,
indicating that some the Gamow-Teller strength, which is
so important for both types of NME, is missing from this
model space. For example, in jj55, the total sum of the
Gamow-Teller strength for 136Xe is 52, compared to the
value of 84 expected from the Ikeda sum rule (see also
Table I below).

In this Letter we investigate the effects of the missing
0g9=2 and 0h9=2 orbitals in jj55. This expanded model

space that includes seven orbitals for protons and neutrons
will be called jj77. We consider a hierarchy of approx-
imations in the jj77 model space. The two-body matrix
elements with good J and T were obtained from the code

CENS [27]. The procedure discussed below was used to
obtain a Hamiltonian for the jj77model space that we will
refer to as jj77a. In the first step, the short-range part of the
N3LO potential [28] was integrated out using the Vlow k

method [29]. The relative two-body matrix elements were
evaluated in a harmonic-oscillator basis with @! ¼ 7:874
(a value appropriate for 132Sn). In the second step the
interaction was renormalized into the jj77 model space
assuming a 100Sn closed core. The 0g9=2 orbital was treated

as a hole state, while the others are treated as particle
states. For the energy denominators we take all orbits in
the jj77 space to be degenerate, with the other orbitals
spaced in units of @! above and below. The core-

polarization calculation used the Q̂-box method included
all non-folded diagrams through second-order in the inter-
action, and sums the folded diagrams to infinite order [30].
Particle-hole excitations up through 4@! were included.
Matrix elements obtained in the proton-neutron basis
were transformed to a good-T basis by using the neutron-
neutron matrix elements for the T ¼ 1 components.
The single-particle matrix elements were obtained start-

ing with the jj55 model space for a 132Sn closed core. The
five single-particle energies for 0g7=2, 1d5=2, 1d3=2, 2s1=2,

and 0h11=2 were adjusted to reproduce the experimental

values for neutron holes related to the spectrum of 131Sn as
given in [31]. The results obtained for the single-particle
energies of protons related to the spectrum of 133Sb are in
reasonable agreement with experiment [31] except that the
1d5=2 energy is too high by 1.2 MeVand the 1h11=2 energy

is too high by 2.4 MeV. Reduction of the diagonal two-
body matrix elements by 0.3 MeV for these two orbitals
improves the agreement with experiment with minimal
overall change to the Hamiltonian. The theoretical and
experimental spectra for nuclei with up to six protons
added and/or four neutrons removed from 132Sn agree
within an rms deviation of a few hundred keV. The results
are similar to those shown and discussed in the review by
Coraggio et al. [32]. The adjustment of the single-particle
energies to experiment implicitly includes the effects due
to three-body interactions of one valence nucleon with two
nucleons in the 132Sn core. The three-body interaction of
two-valence nucleons with one nucleon in the core is
neglected, but it is small, on the order of 100 keV [33].

TABLE I. Matrix elements in MeV�1 for 2� decay calculated
using the standard quenching factor 0.74 for the Gamow-Teller
operator using different number of excitations from jj55 to the
larger model space. The last column gives the calculated Ikeda
sum rule for 136Xe.

nð0þÞ nð1þÞ M2� Ikeda

0 0 0.062 52

0 1 0.091 84

1 1 0.037 84

1 2 0.020 84

PRL 110, 222502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
31 MAY 2013

222502-2



The two-hole spectrum for 130Sn and the two-particle
spectrum for 134Te are in best overall agreement with
experiment if the T ¼ 1 matrix elements are multiplied
by 0.9. The results (experiment vs theory) are (1.28,
1.34) MeV for 130Sn and (1.22, 1.35) MeV for 134Te. For
application to the larger jj77 model space, the single-
neutron hole energy for 0g9=2 was placed six MeV below

the 0g7=2 energy in 131Sn, and the single-proton particle

energy for 0h9=2 was placed six MeV above the 0h11=2
energy in 133Sb. Using this interaction, we calculated the
excitation energies of the 2þ, 3þ, and 4þ states of 136Xe
and 136Ba and found deviations from the experimental
values smaller than 200 keV for both n ¼ 0 and n ¼ 1
(definition of n is given below).

The 2��� half-life for the transition from the 0þ g.s. of
136Xe to the 0þ g.s. of 136Ba can be calculated [9] using

½T2�
1=2��1 ¼ G2�jM2�

GTð0þÞj2; (1)

where G2� is a phase space factor, and M2�
GTð0þÞ is the

2��� matrix element given by the double Gamow-Teller
sum

M2�
GTð0þÞ ¼

X

k

h0þf k���k1þk ih1þk k���k0þi i
Ek þ E0

: (2)

Here, Ek is the excitation energy of the 1þk state of 136Cs
and E0 ¼ ð1=2ÞQ��ð0þÞ þ�M ¼ 1:31 MeV, where we

used the recently reported [34] Q value Q��ð0þÞ ¼
2:458 MeV corresponding to the �� decays to the g.s. of
136Ba; �M is the 136Cs-136Xe mass difference. For the
2��� of 136Xe a G2� of 1:279� 10�18 yr�1 MeV2 [9]
was used to extract [7,8] the M2�

GTð0þÞ of 0:019 MeV�1.

Newer values of G2� were recently proposed [35].
They depend on the fourth power of the axial coupling
constant gA, which may be quenched in heavy nuclei.
For gA ¼ 1:254 [9], the new value [35] of G2� is
0:925� 10�18 yr�1 MeV2, corresponding to a M2�

GTð0þÞ
of 0:023 MeV�1.

In Ref. [20] we fully diagonalized 250 1þ states in the
intermediate nucleus to calculate the 2��� decay NME
for 48Ca. This procedure can be used for somewhat heavier
nuclei using the J-scheme shell-model code NUSHELLX

[36], but for cases with very large dimensions one needs
an alternative method. Here we used a novel improvement
[37] of the known strength-function approach [17], which
is very efficient for cases with large dimensions. such as
jj55 and jj77. For example, to calculate the NME for the
decays of 128Te in jj55 and 136Xe in jj77 (n ¼ 1 for 0þ
and n ¼ 2 for 1þ in Table I) one needs to solve problems
with m-scheme dimensions of up to the order of up to ten
billions.

The result when restricting the jj77model space to jj55
is given on the first line in Table I. As already mentioned,
the Ikeda sum rule is only 52 rather then 84, indicating that
not all GT strength is available in the jj55 space. Although

the excitation energies of the GT strength distribution
are reasonably well reproduced, the GT operator �� has
to be multiplied by a quenching factor due to correlations
beyond the jj77 model space. In one major harmonic-
oscillator shell calculations, such as the sd or pf, this
quenching factor was determined to be 0:74–0:77 (see,
e.g., Refs. [38,39]), which is consistent with that obtained
in second-order perturbation theory [40,41]. Here we use
0.74. Ref. [26] suggests that one should use a lower
quenching factor in the jj55 model space, 0.45, to get an
NME consistent with the recent experimental data. Indeed,
our matrix element in the jj55 model space becomes
0:022 MeV�1 when 0.45 is used.
However, it would be important to check if the missing

spin-orbit partners are responsible for the larger result; the
relative phases in Eq. (2) could lead to large cancellations.
Here we consider the larger jj77 model space, where we
can allow a few particles (n) to be excited from the 0g9=2
orbital or into the 0h9=2 orbital, relative to jj55. Table I

also presents the NME for different combinations of the
allowed n for the initial and final 0þ states and the
intermediate 1þ states. One can see that when n is 1 for
the 0þ states and 2 for the 1þ states, the NME decreases
almost to the experimental value without the need of
artificially reducing the quenching factor. In addition,
the Ikeda sum rule is always satisfied in the larger model
space.
One should mention that in the jj77 model space the

wave functions could have c.m. spurious components. We
checked our initial and final 0þ g.s. w.f. and we found
negligible (less than 3 keV) spurious contribution to ex-
pectation values of the c.m. Hamiltonian. We did not check
the amount of c.m. spuriously in the intermediate 1þ states,
but it’s unlikely to be large because the strength function
method [37] performs a small number of Lanczos itera-
tions (about 30) starting with a door-way state obtained by
applying the GT operator on the largely nonspuroius 0þ
state. As a further check we compared the GT strength
(BGT) for the transition from the g.s. of 136Xe to the first
1þ state in 136Cs with recent experimental data [42].
Table I of Ref. [42] provides a BGT of 0.149(21) for the
first 1þ state at 0.59 MeV, but we learned [43] that this
will be updated to 0.24(7). Our BGT is 0.51 in the jj55
model space, but 0.34 in the largest jj77 model space,
much closer to the experimental value. Although we
cannot verify if the calculations are converged, we can
conclude that including all spin-orbit partners is essential
for a good description of the 2��� for 136Xe.
Having tuned our nuclear structure techniques for

the description of the two-neutrino double-beta decay,
we calculate the NME necessary for the analysis of the
neutrinoless double-beta decay half-life 136Xe [22,44].
Considering the most important mechanisms that could
be responsible for 0��� decay [45], one can write the
0��� half-life as
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½T0�
1=2��1 ¼ G0�j��LM

0�
� þ �NM

0�
N þ ��0M0�

�0 þ �~qM
0�
~q j2;
(3)

where M0�
j NME and �j are neutrino physics parameters

for light neutrino exchange (j ¼ �), heavy neutrino
exchange (j ¼ N), gluino exchange (j ¼ �0), and squark-
neutrino mechanism (j ¼ N) as described in Refs. [44,45].
G0� is a phase space factor tabulated in several publica-
tions. One widely used value [9] is 43:7� 10�15 yr�1.
A recent publication [35] proposes 36:05� 10�15 yr�1,
which is about 20% lower. The results for the NME calcu-
lated in the closure approximation are presented in Table II
using the n ¼ 0 and n ¼ 1 0þ, w.f. (see Table I). Two
recent short-range correlation (SRC) parameterizations are
used [13,22]. No quenching of the bare transition operator
was used [22,46]. The M0�

� for the jj55 model space (n ¼
0) is consistent with other recent shell-model results [21].
The NME for the other three mechanisms calculated within
a shell-model approach are reported here for the first time.
The NME in the largest space (n ¼ 1) are 10%–30% lower.
These results suggest that the inclusion of the spin-orbit
partners, which proved to be significant for a good descrip-
tion of the 2��� NME, are also important for a reliable
description of the 0��� NME. In addition, they indicate
that the net effect is a decrease of the NME, which seems to
be in agreement with recent QRPA calculations [47], rather
than the increase relative to the jj55 value found in [48],
suggesting a trend towards the larger results reported by
other QRPA, IBM-2, Projected Hartree-Fock Bogoliubov
[49], and generator coordinate method [50] calculations.
We performed similar calculations of the NME for the
transition of the 134Te g.s. to the 134Xe g.s., for which
n ¼ 2 can be included. When n ¼ 2 is included the
T ¼ 1 (pairing) part of the Hamiltonian needs to be
reduced by 20% in order to describe the energies of
130Sn and 134Te. We found that theM0�

� NME is somewhat
closer to the jj55 value but still smaller, while the 2���
NME remains about the same. These results for the nearby
semi-magic 134Te suggest that the NME for 136Xe might
not change significantly when n > 1 truncations are con-
sidered for the 0þ states, provided that the effective inter-
action is adjusted to describe the spectroscopy of the nuclei

involved. Table II also presents upper limits for the neu-
trino physics parameters j�up

j j under the assumption of

single mechanism dominance. They were obtained from
Eq. (3) using the lower limit for the half-life 1:6� 1025 yr
from Ref. [8] and the two phase space factors of
Refs. [9,35]. Using the upper limits for j��Lj ¼ m��=me

one can extract an upper limit for the effective neutrino
mass m�� of 0.42–0.46 eV.

In conclusion, we reported a new shell-model analysis
of the two-neutrino double beta decay of 136Xe that takes
into account all relevant nuclear orbitals necessary for a
good description of the Gamow-Teller strength. We show
that this extension of the valence space can account for
the small NME without recourse to an artificially small
quenching factor. We also show that it could lead to smaller
NME for the most interesting neutrinoless double beta
decay mode.
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