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We study the number of distinct sites SNðtÞ and common sites WNðtÞ visited by N independent one

dimensional random walkers, all starting at the origin, after t time steps. We show that these two random

variables can be mapped onto extreme value quantities associated with N independent random walkers.

Using this mapping, we compute exactly their probability distributions Pd
NðS; tÞ and Pc

NðW; tÞ for any
value of N in the limit of large time t, where the random walkers can be described by Brownian motions.

In the large N limit one finds that SNðtÞ=
ffiffi
t

p / 2
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p þ ~s=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p Þ andWNðtÞ=
ffiffi
t

p / ~w=N where ~s and

~w are random variables whose probability density functions are computed exactly and are found to be

nontrivial. We verify our results through direct numerical simulations.
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In elementary set theory, two fundamental concepts are
the union and the intersection of a number of N sets. While
the union consists of all distinct elements of the collection
of sets, the intersection consists of common elements of all
the sets. These two notions appear naturally in everyday
life: for example the area of common knowledge or the
whole range of different interests amongst the members of
a society would define respectively its stability and activity.
In an habitat of N animals, the union of the territories
covered by different animals sets the geographical range
of the habitat, while the intersection refers to the common
area (e.g., a water body) frequented by all animals. In
statistical physics, these two objects are modeled respec-
tively by the number of distinct and common sites visited
by N random walkers (RWs). The knowledge about the
number of distinct sites has applications ranging from the
annealing of defects in crystals [1,2] and relaxation pro-
cesses [3–6] to the spread of populations in ecology [7,8]
or to the dynamics of web annotation systems [9].

Dvoretzky and Erdös [10] first studied the average
number of distinct sites hS1ðtÞi visited by a single t-step
RW in d dimensions, subsequently studied in [11–13].
Larralde et al. generalized this to N independent t-step
walkers moving on a d-dimensional lattice [14]. They
found three regimes of growth (early, intermediate, and
late) for the average number of distinct sites hSNðtÞi as a
function of time. These three regimes are separated by two
N-dependent times scales [14]. In particular they showed
that in d¼1 and t � ffiffiffiffiffiffiffiffiffiffiffiffiffi

log N
p

, hSNðtÞi/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DtlogN

p
, where

D is the diffusion constant of a single walker. Recently
Majumdar and Tamm [15] studied the complementary
quantity, the number of common sites WNðtÞ visited by N
walkers, each of t steps, and found analytically a rich
asymptotic late time growth of the average hWNðtÞi. In
the (N � d) plane they found three distinct phases sepa-
rated by two critical lines d ¼ 2 and dcðNÞ ¼ 2N=ðN � 1Þ,

with hWNðtÞi � t� at late times where � ¼ d=2 (for d < 2),
� ¼ N � dðN � 1Þ=2 [for 2< d< dcðNÞ] and � ¼ 0
[for d > dcðNÞ] (see also [16]). In particular, in d ¼ 1,

hWNðtÞi �
ffiffiffiffiffiffiffiffiffi
4Dt

p
with a N-dependent prefactor. However,

most of these studies were limited to the average number
of distinct or common sites, and there exists virtually
no information about their full probability distributions,
e.g., the probabilities Pd

NðS; tÞ that SNðtÞ ¼ S and Pc
NðW; tÞ

that WNðtÞ ¼ W.
In high dimensions, d > 2, the trajectories of the N

walkers hardly overlap, which renders the study of these
distributions much simpler. For instance, from the central
limit theorem, Pd

NðS; tÞ converges, for large d and N, to a
Gaussian distribution. In contrast, in one dimension (1d)
where the overlap between the trajectories is maximal, one
would expect significant deviations from the Gaussian
distribution. In this Letter, we provide a complete ana-
lytical characterization of this non-Gaussian statistics
by revealing an interesting connection to extreme value
statistics (EVS), a subject of much current interest. In
addition, the 1d case is relevant to biological applications,
in particular to the process of finding location of specific
DNA sequences by proteins [17], and also to environmen-
tal sciences, for example, river pollution [18], as discussed
below.
Single molecule experiments have evidenced [19] that

search processes in the cell combine 1d diffusion along
DNA (‘‘sliding’’) and 3d excursions (‘‘hopping’’ or
‘‘jumping’’): this is called facilitated diffusion. The 1d
diffusion along DNA has been reported for various types
of proteins [19] which, in many cases, behave as a collec-
tion of independent RWs in 1d: they can indeed bypass one
another by stepping or jumping [20]. Hence, for instance,
for DNA-repairing proteins, SNðtÞ is directly related to the
size of the DNA sequence which has been scanned. In the
case of river pollution the number of distinct sites will give
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the range of pollution whereas the number of common
points measures the range of highly polluted region by
different polluting agents or dye diffusing in the river
[18]. The study of the number of distinct and common
points in 1d case is the main subject of this Letter.

In this case, we show that SNðtÞ and WNðtÞ can be
mapped onto extreme values (nearest and furthest dis-
placements) associated with N independent walkers.
This connection to EVS allows us to compute Pd

NðS; tÞ
and Pc

NðW; tÞ exactly for t � 1 and arbitrary N. Indeed,
although the N walkers are independent, conditioning
their trajectories to a given number of distinct (or com-
mon) visited sites introduces strong effective correlations
between them. We show that the induced correlations
between the walkers persist even for N ! 1 where the
limiting distributions are not given by EVS of independent
random variables, as erroneously argued in the previous
studies of SNðtÞ [14].

We consider N independent and identical t-step RWs
x1ð�Þ; x2ð�Þ; . . . ; xNð�Þ on a 1d lattice, all starting at the
origin, each with the same diffusion constant D. Distinct
sites are those that are visited at least once by at least one of
theN walkers [14], while common sites correspond to sites
visited individually at least once by all the N walkers [15].
We denote by Mi and mi the maximum and the minimum
displacements of the ith walker xi up to time t. The number
of distinct sites visited, SN [21], is then the sum of the
range on the positive (þ ve) side,Mþ, and the range on the
negative (� ve) side m� (see Fig. 1),

SN ¼ Mþ þm�; Mþ ¼ max
1�i�N

Mi;

m� ¼ � min
1�i�N

mi: (1)

Similarly, the number of common sites visited, WN , is the
common span on the þve axis plus the common span mþ
on the �ve axis,

WN ¼ M� þmþ; M� ¼ min
1�i�N

Mi;

mþ ¼ � max
1�i�N

mi: (2)

Equations (1) and (2) establish a precise connection
between SN and WN and the EVS of N independent RWs.
Since, for large t � 1, the lattice RWs converge to

Brownian motions (BMs), the probability distributions
Pd
NðS; tÞ and Pc

NðW; tÞ take the scaling form

Pd
NðS;tÞ¼

1ffiffiffiffiffiffiffiffiffi
4Dt

p pd
N

�
Sffiffiffiffiffiffiffiffiffi
4Dt

p
�
; Pc

NðW;tÞ¼ 1ffiffiffiffiffiffiffiffiffi
4Dt

p pc
N

�
Wffiffiffiffiffiffiffiffiffi
4Dt

p
�
;

(3)

where pd
NðsÞ is the probability density function (PDF) of

the span or range, s ¼ S=
ffiffiffiffiffiffiffiffiffi
4Dt

p
, and pc

NðwÞ is the PDF of

the common span or common range, w ¼ W=
ffiffiffiffiffiffiffiffiffi
4Dt

p
, for N

independent BMs (see Fig. 1) on the unit time interval and
diffusion constant D ¼ 1=4. The rescaled quantities

SN=
ffiffiffiffiffiffiffiffiffi
4Dt

p
and WN=

ffiffiffiffiffiffiffiffiffi
4Dt

p
in (3) are given by (1) and (2),

where M�, m� are replaced by their counterparts ~M� ¼
M�=

ffiffiffiffiffiffiffiffiffi
4Dt

p
and ~m�¼m�=

ffiffiffiffiffiffiffiffiffi
4Dt

p
corresponding to N inde-

pendent BMs on the unit time interval.
It is useful to summarize our main results. We obtain

exactly, for any N, the PDFs pd
NðsÞ and pc

NðwÞ as presented
in (12) and (15) along with (8) and (9). The moments can
also be computed explicitly [22]. The tails of the PDFs can
be derived explicitly,

pd
NðsÞ �

(
aNs

�5 exp½�N�2=ð4s2Þ�; s ! 0;

bN expð�s2=2Þ; s ! 1;
(4)

and

pc
NðwÞ �

(
cNw; w ! 0

dNw
1�N expð�Nw2Þ; w ! 1;

(5)

where aN , bN , cN and dN are computable constants (see
below). For N ! 1, one finds that both PDFs approach a
nontrivial limiting form,

pd
NðsÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
Dð2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

log N
p ðs� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ÞÞ;
Dð~sÞ ¼ 2e�~sK0ð2e�~s=2Þ; (6)

where KnðxÞ denote the modified Bessel functions, and

pc
NðwÞ ¼ NCðNwÞ; Cð ~wÞ ¼ 4

�
~we

� 2ffiffi
�

p ~w
; ~w> 0: (7)

Note that Dð~sÞ (6) is not the Gumbel distribution, as it
was initially argued in [14]. Remarkably the same distri-
bution Dð~sÞ also appears as the limiting distribution of
the maximum of a large collection of logarithmically
correlated random variables on a circle [23–25]. We check

indeed
R
~s
�1 Dð~s0Þd~s0 ¼ 2e�~s=2K1ð2e�~s=2Þ, as in [23]. As a

byproduct of our computation, we show that Dð~sÞ is the
convolution of two independent Gumbel distributions.

time

Range=S
2

Common range = W
2

-

M+

M -

m+

m --

0

t

FIG. 1 (color online). Schematic diagram of two independent
RWs, where Mþ, M�, mþ, m�, and S2, W2 are shown.
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We start by computing the joint cumulative distribution
functions (JCDF) Pdðl1; l2Þ¼Pr :ð ~Mþ� l1; ~m�� l2Þ, rele-
vant for pd

NðsÞ and the JCDF Pcðj1;j2Þ¼Pr :ð ~M�� j1;
~mþ� j2Þ relevant for pc

NðwÞ. We remind that the diffusion
constant is set to D ¼ 1=4. Since the N BMs are
identical and independent, Pdðl1; l2Þ ¼ gNðl1; l2Þ, where
gðl1; l2Þ ¼ Pr :ð ~M � l1; ~m � �l2Þ is the JCDF of the maxi-
mum ~M and the minimum ~m for a single BM on the unit
time interval. It can be computed by the standard method
of images [26],

gðl1; l2Þ ¼ 2

�

X1
n¼0

1

nþ 1
2

sin

�ð2nþ 1Þ�l2
l1 þ l2

�
e
�ðð2nþ1Þ�

2ðl1þl2ÞÞ2 : (8)

Similarly, Pcðj1; j2Þ ¼ hNðj1; j2Þ where hðj1; j2Þ ¼
Pr :ð ~M � j1; ~m � �j2Þ reads

hðj1; j2Þ ¼ 1� erfðj1Þ � erfðj2Þ þ gðj1; j2Þ; (9)

where erfðxÞ ¼ ð2= ffiffiffiffi
�

p ÞRx
0 e

�y2dy, erfðj1Þ ¼ Pr :ð ~M � j1Þ,
and erfðj2Þ ¼ Probð ~m � �j2Þ. From the joint PDF
@2Pdðl1; l2Þ=@l1@l2 and using (1), we obtain

pd
NðsÞ ¼

Z 1

0
dl1

Z 1

0
dl2�ðs� l1 � l2Þ @

2gN

@l1@l2
(10)

with g � gðl1; l2Þ. Similarly, from the joint PDF
@2Pcðj1; j2Þ=@j1@j2 and using (2) we obtain

pc
NðwÞ ¼

Z 1

0
dj1

Z 1

0
dj2�ðw� j1 � j2Þ @2hN

@j1@j2
(11)

with h � hðj1; j2Þ. For small values of N, the double
integrals in (10) and (11) can be performed explicitly and
numerical simulations confirm these exact results [22].
Below we provide a physical interpretation of these for-
mulas (10) and (11), and perform their asymptotic analysis
both for small and large arguments. We also analyze their
limiting form for N ! 1.

Distinct sites.—To find the tails of pd
NðsÞ at small and

large s for finite N, we rewrite (10) as

pd
NðsÞ ¼

Z s

0
dl2�dðs� l2; l2Þ; where

�dðl1; l2Þ ¼ NgN�1 @2g

@l1@l2
þ NðN � 1ÞgN�2 @g

@l1

@g

@l2
:

(12)

We interpret the two contributions in �dðl1; l2Þ as follows
[22]: the first term corresponds to a configuration where
one particle explores a region [� l2, s� l2] (we call it a
box) of size s in unit time interval, such that its maximum
is at s� l2 and its minimum is at �l2, while all the other
(N � 1) particles stay inside this box. On the other hand,
the second term corresponds to a configuration where
two particles create, in a different way, the same box
[� l2, s� l2] of size s: one of the two particles has its
maximum at s� l2 and minimum larger than �l2, while
the second particle has its minimum at �l2 and maximum

below s� l2, and all other (N � 2) particles stay strictly
inside this box.
When s ! 0 in (12), one can replace gðl1; l2Þ (8) by its

asymptotic behavior when l1, l2 ! 0, where gðl1; l2Þ �
ð4=�Þ sinð�l2=ðl1 þ l2ÞÞe�ð�2=4ðl1þl2Þ2Þ. Inserting it in (12),
we see that both terms in (12) contribute equally. After
integration over l2, one then obtains the result announced

in (4) for s ! 0 with aN ¼ 4�3=2NðN � 1Þð4=�ÞN�2 	
ð�ððN � 1Þ=2Þ=�ðN=2ÞÞ, where �ðxÞ is the gamma func-
tion. To perform the large s asymptotic of pd

NðsÞ, we

rewrite the sum in gðl1; l2Þ (8) using the Poisson summa-
tion formula. This allows us to show that the first term in
(12), which corresponds to create a box [� l2, s� l2] with

one particle, decreases as e�ðsþl2Þ2e�l22 , whereas the second
term where the same box is created by two particles

decreases as e�ðs�l2Þ2e�l2
2 . Since l2 is always +ve, the

two-particles term wins over the one-particle term when
s ! 1. This is physically understandable because creating
a very large span with two particles is more likely than
creating the same one with a single particle. It also follows
from this analysis that the integral over l2 in (12) is
dominated by l2 �OðsÞ, which yields finally the large s
behavior announced in (4) with bN ¼ 2NðN � 1Þ= ffiffiffiffi

�
p

.
In Fig. 2 we verify that the small and large s asymptotics
of pd

NðsÞ given in (4), for N ¼ 10, describe fairly well,

without any fitting parameter, the distribution obtained
from direct simulation.
What happens for large N? The typical scale of the

fluctuations of SN=
ffiffi
t

p
can be estimated from the relations

with EVS (1). The variables ~Mi’s which are the maxima
of the ith BM on the unit interval, are independent
and identically distributed variables. Their common PDF

is a half-Gaussian, pðMÞ ¼ ð2= ffiffiffiffi
�

p Þe�M2
, M> 0. The

same holds for the variables � ~mi’s. Hence, for large N,
standard results of EVS [27] state that the typical value of

1 2 3 4 5
s

10
-3.0

10
-2.4

10
-1.8

10
-1.2

10
-0.6

pd 10
(s

)

N=10

-4 -2 0 2 4 6 8
s~

0

0.05

0.1

0.15

0.2

0.25

0.3

pd N
(s

) /
 2

√ l
og

(N
)

N=50
N=100
    (s )

FIG. 2 (color online). Plot of pd
NðsÞ=ð2

ffiffiffiffiffiffiffiffiffiffiffi
logN

p Þ as a function
of ~s ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
logN

p ðs� 2
ffiffiffiffiffiffiffiffiffiffiffi
logN

p Þ. The dashed line indicates the
exact asymptotic results for N ! 1, Dð~sÞ in (6). Inset: Plot of
pd
10ðsÞ, obtained from simulation, compared with its asymptotic

behavior (4).
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~Mþ ¼ max1�i�N
~Mi is Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi

log N
p Þ, while its fluctuations

are of order 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
and governed by a Gumbel distri-

bution. The same holds for ~m� ¼ �min1�i�N ~mi. For large
N, these two extremes become uncorrelated as the global
maximum and global minimum are most likely reached by
two independent walkers. Hence one gets

gN
�
�N þ

~l1
2�N

;�N þ
~l2

2�N

�
!N!þ1

e�e�~l1e�e�~l2 (13)

with �N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
. Inserting (13) in (10) with ~s ¼

2�Nðs� 2�NÞ, one finds
pd
NðsÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p Z 1

�1
d~l2e

�~se�e�~l2e�e�ð~s�~l2Þ ; (14)

which can be evaluated explicitly to give (6). In Fig. 2 we
plot pd

NðsÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
against ~s for N ¼ 50 and 100. They

show a relatively good agreement with the exact result
Dð~sÞ after an overall shift of order Oð1=log NÞ along the
x axis, thus revealing, as expected [28], a slow convergence
towards the asymptotic result. In [14] the authors argued
that the limiting distribution should be a Gumbel distribu-
tion, overlooking the fact that it is actually the convolution
of two Gumbel distributions, as in (14). In particular, for
large ~s, Dð~sÞ � ~se�~s, while the Gumbel distribution
decays as a pure exponential.

Common sites.—To find the small and large w asymp-
totics of Pc

NðwÞ, we write (11) as
pc
NðwÞ ¼

Z w

0
dj2�cðw� j2; j2Þ where

�cðj1; j2Þ ¼ NhN�1 @2h

@j1@j2
þ NðN � 1ÞhN�2 @h

@j1

@h

@j2
:

(15)

In (15), one interprets the first term as one single particle
creating a common span [� j2, w� j2] of size w and the
second term as two particles collaboratively creating the
same common span [22]. In both cases, the remaining
particles are such that their maxima are above w� j2
and their minima are below �j2. When w ! 0 in (15),
hðj1; j2Þ can be replaced by its asymptotic behavior for
small j1, j2: hðj1; j2Þ � ð1� ð2= ffiffiffiffi

�
p Þðj1 þ j2ÞÞ. Integrating

then over j2 in (15) yields the small w behavior in (5) with
cN ¼ 4NðN � 1Þ=�. Note that for w 
 1, it is much more
likely to create a box of size smaller than w with two
particles (which occurs with a probability /w2) than
with a single one [which occurs with probability
/ expð��2=4w2Þ]. The former configurations thus domi-
nate for small w.

To get the large w behavior of pc
NðwÞ, we estimate

hðj1; j2Þ for large j1 (15). This is conveniently done by
using the Poisson formula, which yields hðj1; j2Þ �
erfcð2j1 þ j2Þ þ erfcðj1 þ 2j2Þ. This shows that for w �ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
, the second term in (15) becomes subdominant

compared to the first one. Hence for very largew the leading
contribution comes from the first term where we replace

hðN�1Þðw� j2; j2Þ � ½erfcðwþ j2Þ þ erfcð2w� j2Þ�N�1 by

erfcðN�1ÞðwÞ, as one can show that the integral over j2 in
(15) is dominated by the vicinity of j2 ¼ 0 [22]. This leads

to the large w behavior in (5) with dN ¼ 8N=�N=2.
The asymptotic behaviors of pc

NðwÞ (5) have been verified
numerically for N ¼ 3 in Fig. 3.
To obtain the typical scale ofWN=

ffiffi
t

p
for large N, we use

its relation to EVS (2). From EVS for independent and
identically distributed random variables [27], we know that
~M� ¼ min1�i�NMi, whereMi � 0 and distributed accord-
ing to a half-Gaussian, is of orderOðN�1Þ. Its PDF is given
by a Weibull law, which is here an exponential distribution

[27]. Indeed one has Pr :ðN ~M� � xÞ ¼ e�ð2= ffiffiffi
�

p
xÞ, x > 0,

as N ! 1. The same holds for ~mþ, which for large N
becomes independent of ~M� as both of them are reached

by two independent walkers. Hence, from (2),NWN=
ffiffiffiffiffi
2t

p
is

given by the convolution of two exponential laws,

pc
NðwÞ � N2ð4=�Þe�ð2= ffiffiffi

�
p ÞNw

Z w

0
dk� NCðNwÞ; (16)

with Cð ~wÞ as announced in (7). We have also obtained this
result by a direct large N expansion of (15). In Fig. 3 we
plot pc

NðwÞ=N against ~w ¼ Nw for N ¼ 10, 20 and 30 and
see that they tend to coincide with the function Cð ~wÞ,
although the convergence is slow (a common fact for
EVS [28]) and nonuniform. The best agreement is seen
around ~w� 1, where pc

NðwÞ is peaked. This is expected as
Cð ~wÞ describes the typical fluctuations of WNðtÞ. It would
be interesting to study the large deviations of pc

NðwÞ away
from the peak, for finite but large N.
Conclusion.—We have achieved a complete analytic

description of the PDFs of the number of distinct and
common sites visited by N independent RWs after t time
steps, for large t. Our results could be relevant for proteins
diffusing independently on DNA [19] or polluting agents

0 0.5 1w
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2.0

pc 3
(w

)

N=3

0.125 0.25 0.5 1 2 4 8
w~
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0.016

0.031

0.062

0.125

0.250

0.500

pc N
(w

) 
/ N

N =10
N =20
N =30
   (w)

FIG. 3 (color online). Log-log plot of pc
NðwÞ=N as a function

of ~w ¼ Nw. The dashed line indicates the exact asymptotic
results for N ! 1, Cð ~wÞ in (7). Inset: Plot of pd

3ðwÞ, obtained
from simulation, compared with its asymptotic behavior (5).
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diffusing in rivers [18]. One may wonder about the effects
of interactions between the walkers. For instance, one can
study nonintersecting (vicious) RWs [29], which would be
relevant for proteins sliding on DNAwithout the possibility
to bypass [20]. In view of recent results for EVS for vicious
walkers [30,31], it will be interesting to study the statistics
of SNðtÞ and WNðtÞ in this interacting case.
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