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We design a random walk to explore fractal landscapes such as those describing chaotic transients in

dynamical systems. We show that the random walk moves efficiently only when its step length depends on

the height of the landscape via the largest Lyapunov exponent of the chaotic system. We propose a

generalization of the Wang-Landau algorithm which constructs not only the density of states (transient

time distribution) but also the correct step length. As a result, we obtain a flat-histogram Monte Carlo

method which samples fractal landscapes in polynomial time, a dramatic improvement over the

exponential scaling of traditional uniform-sampling methods. Our results are not limited by the dimen-

sionality of the landscape and are confirmed numerically in chaotic systems with up to 30 dimensions.
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The development of Monte Carlo methods had a dra-
matic impact on our understanding of high-dimensional
systems. The spectrum of applications of these methods
was considerably expanded with the development of opti-
mized methods, such as flat-histogram [1–3] and parallel
tempering [4] and now includes problems in a variety of
fields, ranging from fluid dynamics [5] and spin systems
[1–3] to protein simulations [6,7]. These methods effi-
ciently compute averages using nonuniform sampling and
are optimized to problems on which the high dimension-
ality of the system leads to phase spaces with complex
(rough) energy landscapes.

In chaotic dynamical systems, complex landscapes
appear even in low dimensions due to the sensitivity of
initial conditions. Prominent examples of such landscapes
appear in systems showing chaotic transients. Transient
chaos is a classical problem of nonlinear dynamics [8]
with recent applications in fields ranging from quantum
scattering to chemical and biological reactions in fluid
flows [9,10]. In transient chaotic systems, trajectories
have a finite-time chaotic regime characterized by the
time t they need to escape the chaotic region of the
phase-space. The fraction �ðtÞ of initial conditions which
escape the chaotic transient at time t decays as �ðtÞ � e��t

(where � is the escape rate) and the set of initial conditions
with t ¼ 1 is fractal (e.g., a Cantor set) [7,9]. The depen-
dence of t on the phase-space coordinates r build thus a
fractal landscape where the escape time t is interpreted as
its height, as illustrated in Fig. 1. Such extreme rough
landscapes pose major numerical challenges [8,9]. While
algorithms beyond uniform sampling have been proposed
for specific problems, e.g., to compute the fractal dimen-
sion [11] or to find long-living trajectories [12–14], there is
still no general framework to sample the phase space of
such systems.

In this Letter we show howMonte Carlo methods can be
applied to fractal landscapes such as those appearing in
dynamical systems with chaotic transients. The crucial step
is to design a random walk able to sample the extreme
roughness of fractal landscapes. We show that an efficient
flat-histogram simulation is only obtained using a random-
walk step length�which scales with the landscape height t
as �ðtÞ � e��Lt, where �L is the maximum Lyapunov
exponent of the underlying chaotic system. Moreover, by
extending the Wang-Landau procedure [2] to the proposal
distribution of random walk steps, we obtain an adaptive
algorithm which provides simultaneously �ðtÞ and �ðtÞ. In
transient chaos problems, our approach changes the scaling

FIG. 1 (color online). Fractal landscapes in transient chaos.
Escape time t as a function of the phase space coordinates
(y1, y2) at x1 ¼ x2 ¼ 0 of the four-dimensional coupled Hénon
maps defined in Eq. (6), which will be given later. Inset:
magnification showing a Cantor set-like profile. The circles
(states) and arrows (proposals) represent the random walk (green
or red indicate accepted or rejected proposals) underlying the
Monte Carlo sampling.
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of the computational effort from exponential to polynomial
(with maximum t) and both efficiently finds the large t
trajectories and computes averages over the phase space.

We consider a fractal landscape as an escape time func-
tion of a transient chaotic system. Given a discrete-time
open dynamical system rnþ1 ¼ FðrnÞ defined in a
D-dimensional phase space �, the escape time tðrÞ is
defined as the number of iterations needed for an initial
condition r to leave the region of nontrivial dynamics [9].
We propose an algorithm that constructs both the total
volume �ðtÞ of the landscape (which is the escape time
distribution of the open chaotic system) and the correct
step length�ðtÞ at each t, in a predetermined time spectrum
[tmin, tmax] and with a precision f, which is successively
reduced (initially f ¼ e and�ðtÞ ¼ �ðtÞ ¼ 1 for all t). The
underlying random walk of the algorithm consists of
(1) proposing a new state and (2) accepting or rejecting
the proposed state. The random walk domain is the space
of initial conditions � 2 � [15], is initialized at r 2 �, t ¼
tðrÞ, and evolves according to the following four steps:

S1-propose a state r0 2 � with t0 ¼ tðr0Þ 2 ½tmin; tmax�
[e.g., using Eq. (1) below]

S2-accept or reject the state r0 according to flat-
histogram choice [Eq. (5) below]

S3-update �ðtÞ and �ðtÞ, respectively, to
S3.1-�ðtÞf (Wang-Landau)
S3.2-�ðtÞf if t0 ¼ t; �ðtÞ=f if t0 < t

S4-After a number of repetitions of S1–S3, refine f to
ffiffiffi
f

p
and go to S1.

This procedure stops when f ¼ fmin * 1, a value which
controls the precision of �ðtÞ and �ðtÞ. Using only S1 and
S2, the random-walk corresponds to a flat-histogram
Monte Carlo simulation on t [1]. We now describe in
more detail the steps S1–S4; see Supplemental Material
[16] for an implementation of the method.

S1-Proposal.—The ideal random walk should be able to
explore the order of the landscape for an efficient search. In
discrete spaces, often considered in spin systems, there is a
natural local step given by flipping a single spin [17]. In
continuous spaces the locality of the step is determined by
the neighborhood around the present state. Fractal land-
scapes do not have a global characteristic length scale [8,9]
and therefore we consider a height dependent step length
� ¼ �ðtÞ. Accordingly, we choose an isotropic conditional
probability of proposing a new state r0 given r as

gðr ! r0Þ ¼ 1

�ðtðrÞÞ e
�jr�r0j=�ðtðrÞÞ; (1)

where �ðtÞ gives the characteristic length of the distribu-
tion [18].

We now show how �ðtÞ has to scale with t for an
efficient proposal. We consider the construction of the
Cantor set [8,9] as a paradigm of fractal landscape appear-
ing in transient chaotic systems, see Fig. 2. The construction
starts by splitting the interval [0, 1] in the intervals
[0, 1=a], [1=a, 1� 1=b] [1� 1=b, 1] and assigning the

escape time t ¼ 0 to the middle interval (plateau at
t ¼ 0). This procedure is repeated on each of the two
surviving intervals by assigning t ¼ 1 to each of their two
middle intervals (plateaus at t ¼ 1), and again in the
remaining intervals ad infinitum. In order to achieve an
efficient proposal we have to know the scaling of the typical
length of the plateaus ~"ðtÞ with t. For the one-scale Cantor
set (a ¼ b), each of the 2t plateaus have a unique length
given by "ðtÞ ¼ ð1� 2=aÞð1=aÞt and thus ~"ðtÞ ¼ "ðtÞ. For
the two-scale Cantor set (a � b), the 2t plateaus have tþ 1
different lengths "kðtÞ ¼ ð1� 1=a� 1=bÞð1=aÞt�kð1=bÞk
with k ¼ 0; . . . ; t and the number of plateaus with size
"kðtÞ is the binomial coefficient Bðt; kÞ, see inset of Fig. 2.
The total length at t is �ðtÞ ¼ ð1� 1=a� 1=bÞ�
ð1=aþ 1=bÞt � expð��tÞ. The conditional probability of
being at a plateau of length "kðtÞ at a given t is

PðkjtÞ ¼ Pðk; tÞ
PðtÞ ¼ Bðt; kÞ"kðtÞ

�ðtÞ : (2)

The characteristic plateau size is thus naturally chosen as
~"ðtÞ ¼ "k� ðtÞ where k ¼ k� maximizes PðkjtÞ in Eq. (2).
Using Stirling’s approximation, we obtain k� �
t=ð1þ b=aÞ and thus

~"ðtÞ ¼ "k� ðtÞ ¼ exp

�
�t

a logðbÞ þ b logðaÞ
aþ b

�
: (3)

In the context of transient chaos, the construction of the
Cantor set corresponds exactly to the escape time function
of the one-dimensional open tent map [19], and the expo-
nent�L ¼ ½a logðbÞ þ b logðaÞ�=ðaþ bÞ corresponds to its
positive Lyapunov exponent [9]. This leads to the following
natural interpretation for a choice of �ðtÞwith ~"ðtÞ as given
in Eq. (3): in order to ensure that two chaotic trajectories
(initiated at r and r0) remain correlated up to time t, their
initial distance jr� r0j should be reduced exponentially
with t, with an exponent equal to the positive Lyapunov
exponent responsible for the divergence in time. In a generic
fractal landscape, generated by a higher-dimensional sys-
tem, this divergence is dominated by the maximal
Lyapunov exponent �L and therefore

FIG. 2 (color online). Fractal landscape corresponding to the
two-scale Cantor set with scales 1=a and 1=b. Each plateau at t
with width "ðtÞ generates two plateaus at tþ1, with widths "ðtþ
1Þ¼"ðtÞ=a and "ðtþ 1Þ ¼ "ðtÞ=b, see inset. At each t, the 2t

plateaus have lengths "kðtÞ with k ¼ 0; . . . ; t.
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�ðtÞ � ~"ðtÞ � e��Lt (4)

should be used in any isotropic proposal such as Eq. (1).
S2-Acceptance.—Because of the extreme roughness of

fractal landscapes, we use a flat-histogram simulation [1]
on the variable t, which plays the role traditionally played
by energy. In a flat-histogram, the probability to sample a
state r is 1=�ðtðrÞÞ. Consequently, the detailed balance of
this Monte Carlo process is fulfilled when the conditional
probability of accepting a proposed state r0 given r follows
the Metropolis’s choice [17]

Aðr ! r0Þ ¼ min

�
1;

�ðtðrÞÞ
�ðtðr0ÞÞ

gðr0 ! rÞ
gðr ! r0Þ

�
; (5)

where gðr ! r0Þ is given by Eq. (1). Since we are consid-
ering projections in t, it is useful to define the conditional
probability AðtÞ of accepting a proposal given a time t [17].
In the spirit of flat-histogram simulations, a signature of an
efficient random walk is an AðtÞ which does not strongly
depends on t. In Fig. 3 we show that only when the scaling
in Eq. (4) is used in the Eq. (1), we obtain a constant AðtÞ
and thus an efficient simulation.

S3-Wang-Landau update.—In systems on which �ðtÞ
and �ðtÞ (or �L) are known, we use steps S1–S2 to sample
them. However, for generic landscapes, �ðtÞ and �ðtÞ are
unknown. We take advantage of the analogy between �ðtÞ
and a density of states and apply the Wang-Landau proce-
dure to compute it [2]. This is done by successive approx-
imating �ðtÞ in steps S3 and S4 of our approach. To
compute �ðtÞ, we propose the following generalization of
the Wang-Landau procedure (step S3.1) to the proposal
distribution (step S3.2): if the proposed state has an escape
time smaller than the present state, t0 < t, we decrease �ðtÞ
by dividing it by f. If it has the same escape time, t0 ¼ t,
we increase �ðtÞ by multiplying it by f. Asymptotically
(f ¼ fmin ! 1), a flat-histogram Markov process is
recovered.

S4-Refinement.—Steps S1–S3 are repeated for a prede-
fined number of round-trips [17,20], defined as the move-
ment in the time spectrum from tmin to tmax and back to tmin.
The number of round-trips is chosen using an equivalent
procedure to the one in Ref. [21]. After that, we refine the
precision parameter f by taking its square root [2].
We now confirm the generality of the approach

described above through numerical simulations in generic
fractal landscapes generated by a family of coupled Hénon
maps rnþ1 ¼ FðrnÞ, with r ¼ fxi; yigNi¼1 and F defined by

xi

yi

 !
nþ1

¼ Ai � x2i þ Byi þ kðxi � xiþ1Þ
xi

 !
n

; (6)

with i ¼ 1; . . . ; N, N þ 1 � 1 and parameters k ¼ 0:4,
B ¼ 0:3, A1 ¼ 3 (if N > 1), AN ¼ 5, and Ai ¼
A1 þ ðAN � A1Þði� 1Þ=ðN � 1Þ. This choice of parame-
ters ensures that a chaotic map is obtained in the N ¼ 1
case and the map considered in Ref. [13] is recovered for
N ¼ 2 (used as a representative case to illustrate our
algorithm). Initial conditions are on a 2N hypercube � ¼
½�4; 4�2N and escape is defined as leaving �. In Fig. 4 we
confirm the convergence and validity of our algorithm by
showing that the computed �ðtÞ coincides with the one
obtained using uniform sampling, �ðtÞ scales with the
Lyapunov exponent reported in Ref. [13], and both the
acceptance and the histogram of visits to escape time t
are flat in t.
We now compare our approach to uniform sampling in

terms of computational efficiency. For each tmax, we com-
pute the average number of map iterations nðtmaxÞ per
sampled state with t ¼ tmax. This comparison guarantees
that the uncertainty of any observable at t ¼ tmax (worst
case) is the same in both approaches. For a uniform-
sampling simulation, nðtmaxÞ � 1=�ðtmaxÞ � e�tmax . For a
flat-histogram simulation, obtained after the convergence

FIG. 3. Characteristic random-walk step � has to scale as the
typical plateau size ~" in order to achieve a constant acceptance
ratio in time. Acceptance ratio AðtÞ of a flat-histogram simula-
tion on the two-scale Cantor set with ða; bÞ ¼ ð3; 4Þ with three
(see legend) different exponents � on the step length �ðtÞ �
e��t, with �L given after Eq. (3). For � < �L and t � 1, AðtÞ
decays (exponentially) as a consequence of lack of proposals to
t0 > t because �ðtÞ � ~"ðtÞ. For � > �L and t � 1, AðtÞ in-
creases to 1 but the simulation gets stuck in the same plateau
as all proposals are for t0 ¼ t because �ðtÞ 	 ~"ðtÞ.

FIG. 4. Confirmation that our method yields the correct values
of � and �L and converges to a flat histogram simulation for the
case N ¼ 2 in Eq. (6). (a) �ðtÞ obtained through our method
(line) and through uniform sampling (circles) with the same
computational effort (measured in number of map iterations).
Lower inset: histogram HðtÞ of visits to escape times t. (b) �ðtÞ
obtained through our method. The dashed line shows the scaling
e��Lt with �L � 1:33 obtained in Ref. [13]. Lower inset: the
acceptance ratio AðtÞ. We used ½tmin; tmax� ¼ ½1; 45�, logefmin ¼
2�13 and all quantities were measured on the last refinement.
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of our method S1–S4, we adopt a conservative approach
which avoids the sampling of correlated states by consid-
ering a single sample of tmax for each round-trip. The
estimation of nðtmaxÞ in this case is based on the expected
number of steps per round-trip expected of an unbiased
random walk in the time spectrum with local steps
(�t � 1), which scales as �t2max. Additionally, each pro-
posal requires t map iterations and, since the histogram is
flat, for each round trip one gets an additional tmax con-
tribution, leading to an expected scaling of n� t3max.
Figure 5 confirms the dramatic improvement from expo-
nential (uniform sampling) to polynomial (our approach)
scaling in the coupled Hénon maps. The significance of
these results become apparent by noticing that tmax ¼ 237
(last point in Fig. 5) corresponds to �ðtmaxÞ � 10�109,
meaning that we are able to sample extremely rare states.
For such level of accuracy, our method requires an imple-
mentation with arbitrary precision [22] which in our case
was able to resolve states which differ by 10�137 [since
�ðtmax ¼ 237Þ � 10�137]. Interestingly, the slight but clear
deviation from the prediction t3max seen in Fig. 5 shows that
flat-histogram simulations on fractal landscapes are not
purely diffusive on t, a phenomenon known in spin-
systems as critical slowing down [23,24]. This phenome-
non is enhanced with increasing dimension and contributes
to the exponential increase of nmax with N for a fixed tmax,
as shown in the inset of Fig. 5. Still, an uniform sampling in
such a high-dimension (2N ¼ 30) phase-space would need
impracticable n � 1034 map iterations to sample one state
with tmax ¼ 16.

In summary, we have shown how flat-histogram
Monte Carlo simulations can be performed on fractal land-
scapes. The crucial ingredient is to consider a random-walk

step size dependent on the height of the landscape. The
correct dependency should scale as the characteristic
length of the landscape and can be obtained through an
adaptive procedure which generalizes Wang-Landau’s al-
gorithm to the proposal distribution. This idea can find
applications in any rough landscape with a height depen-
dent characteristic width. Fractality can be considered as
an extreme case of roughness which naturally occurs in
dynamical systems with chaotic transients. In this case, our
results show that the Lyapunov exponent �L, a fundamen-
tal property of the chaotic dynamics, is an essential ingre-
dient for a flat-histogram simulation.
We emphasize the significance of our results for numeri-

cal investigations of transient chaos. Our method automati-
cally provides the escape rate � and the maximum
Lyapunov exponent of the system �L, is not limited to
low dimension, and allows for the computation of expected
values of any observable using a flat-histogram simulation.
For the specific problem of finding the chaotic saddle
[12–14], which is indirectly solved in our simulations by
storing trajectories with large t, our findings show that best
results are achieved using a proposal which scales as e��Lt.
More generally, besides high dimensionality, the sensi-

tivity of initial conditions in chaotic systems is a major
reason for using statistical methods in physics.
Monte Carlos methods in dynamical systems were tradi-
tionally limited to uniform sampling and, only recently,
optimized methods (with nonuniform sampling) were
applied for the problem of finding trajectories with low
chaoticity [25,26]. Our approach opens the perspective of
using the full strength of optimized Monte Carlo methods
in problems that involve the computation of averages in
chaotic systems. Spatially extended [27] and nonhyper-
bolic Hamiltonian [28] systems are natural candidates for
future applications of this approach.
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