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The emergence of explosive synchronization has been reported as an abrupt transition in complex

networks of first-order Kuramoto oscillators. In this Letter we demonstrate that the nodes in a second-

order Kuramoto model perform a cascade of transitions toward a synchronous macroscopic state, which is

a novel phenomenon that we call cluster explosive synchronization. We provide a rigorous analytical

treatment using a mean-field analysis in uncorrelated networks. Our findings are in good agreement with

numerical simulations and fundamentally deepen the understanding of microscopic mechanisms toward

synchronization.
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In the past few years, much research effort has been
devoted to investigating the influence of network organi-
zation on dynamical processes, such as random walks [1],
congestion [2,3], epidemic spreading [3] and synchroniza-
tion [4,5]. Regarding synchronization of coupled oscilla-
tors, it has been demonstrated that the emergence of
collective behavior in these structures depends on the
patterns of connectivity of the underlying network. For
instance, through a mean-field analysis, it has been found
that Kuramoto oscillators display a second-order phase
transition to the synchronous state with a critical coupling
strength that depends on the network topology [5].

Recently, discontinuous transitions to phase synchroni-
zation have been observed in SF networks [6–9]. This
phenomenon, called explosive synchronization, was proved
to be caused exclusively by a microscopic correlation
between the network topology and the intrinsic dynamics
of each oscillator. More specifically, Gómez-Gardeñez
et al. [6] considered the natural frequencies positively
correlated with the degree distribution of the network,
defining the natural frequency of each oscillator as equal
to its number of connections.

In this Letter, we substantially extend a first-order
Kuramoto model used in [6] to a second-order Kuramoto
model [10–13] that we modify in order to analyze global
synchronization, considering the natural frequency of each
node proportional to its degree [14–16]. In this model, we
find a discontinuous phase transition in which small degree
nodes join the synchronous component simultaneously,
whereas other nodes synchronize successively according
to their degrees (in contrast to [6] where all the nodes join
the synchronous component abruptly). This is a novel phe-
nomenon which we call cluster explosive synchronization.

By developing amean-field theorywe derive self-consistent
equations that produce the lower and upper critical coupling
strength associated to a hysteretic behavior of the synchro-
nization for uncorrelated networks. The analytical results
are in good agreement with numerical simulations.
Moreover, we show that decreasing the network average
frequency and increasing the coupling strength are the key
factors that lead to cluster explosive synchronization.
The second-order Kuramoto model consists of the fol-

lowing set of equations [10–13]:

d2�i
dt2

¼ ��
d�i
dt

þ�i þ
XN
j¼1

�ijAij sinð�j � �iÞ; (1)

where �i is the phase of the oscillator i ¼ 1; . . . ; N, � the
dissipation parameter,�i the natural frequency distributed
with a given probability density gð�Þ, �ij the coupling

strength and Aij an element of the network’s adjacency

matrix A. Here we assume that all connections have the
same coupling which leads to a homogeneous coupling
strength �ij ¼ �, 8 i, j. To study the influence of dynam-

ics and structure on global synchronization, we assume

�i ¼ Dðki � hkiÞ; (2)

where ki is the degree of node i, hki the network average
degree and D a proportionality constant. A mean-field
analysis allows us to investigate the dynamics of the
model.
We follow the continuum limit approach proposed in

[17] and assume zero degree correlation between the nodes
in the network. Denote by �ðk; �; tÞ the fraction of nodes of
degree k that have phase � at time t. The distribution
�ðk;�; tÞ is normalized according to

R
2�
0 �ðk;�; tÞd� ¼ 1.
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In an uncorrelated network, the probability that a randomly
picked edge is connected to a node with degree k, phase �
at time t is given by kPðkÞ�ðk; �; tÞ=hki, where PðkÞ is the
degree distribution and hki the average degree. For a net-
work, the order parameter r is defined as the magnitude

of reic ðtÞ ¼ P
ikie

i�iðtÞ=
P

iki. In the continuum limit this
yields

reic ¼
Z 1

kmin

dk
Z 2�

0
d�PðkÞk=hki�ðk;�; tÞei�ðtÞ; (3)

where kmin is the network’s minimum degree and c is the
average phase. When the phases � are randomly distrib-
uted, r � 0. On the other hand, when the oscillators evolve
with similar phases, r � 1.

Seeking to write a continuum-limit version of Eq. (1)
with the natural frequencyDðk� hkiÞ and the constant � in
terms of the mean-field quantities r and c , we multiply
both sides of Eq. (3) by e�i� and take the imaginary part,
obtaining

€� ¼ �� _�þDðk� hkiÞ þ k�r sinðc � �Þ; (4)

which is the same equation that describes the movement of
a damped driven pendulum.

In order to derive sufficient conditions for synchroniza-
tion, we choose a reference frame that rotates with the
average phase c of the system, defining �ðtÞ ¼
�ðtÞ � c ðtÞ. Substituting the transformed variables �ðtÞ
into the equations of motion Eq. (4) and defining Cð�rÞ �
ð €c þ � _c Þ=D, we get

€� ¼ �� _�þDðk� hki � Cð�rÞÞ� k�r sin�: (5)

Equation (5) can be interpreted as an extension to the
second-order case of the model recently proposed in [6].
The first-order Kuramoto model studied in [6] presents
hysteresis only when SF topologies are considered in
which each node’s natural frequency is proportional to its
degree. In contrast, it is known that systems described by
a second-order Kuramoto model present hysteresis inde-
pendently of the choice of the natural frequency distribu-
tion [18,19].

In order to obtain sufficient conditions for the existence
of the synchronous solution of Eq. (3), we derive a self-
consistent equation for the order parameter r that can be
written as the sum of the contribution rlock due to oscil-
lators which are phase-locked to the mean-field and the
contribution of the non-locked drift oscillators rdrift; i.e.,
r ¼ rlock þ rdrift [18].

Locked oscillators are characterized by _� ¼ €� ¼ 0, and
turn out to possess degrees in a certain range k 2 ½k1; k2�.
Each locked oscillator has a k-dependent constant phase,
� ¼ arcsinðjDðk� hki � Cð�rÞÞj=k�rÞ, i.e., �ðk;�; tÞ
is a time-independent single-peaked distribution. For the
locked oscillators we obtain

rlock ¼ 1

hki
Z k2

k1

kPðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
Dðk� hki � Cð�rÞÞ

k�r

�
2

s
: (6)

On the other hand, the phase of the drift oscillators
rotates with period T in the stationary state, so that

their density �ðk;�; tÞ satisfies �� j _�j�1 [18]. AsH
�ðk;�Þd�¼R

T
0 �ðk;�Þ _�dt¼ 1, this implies �ðk;�Þ ¼

T�1j _��1j [18]. After substituting �ðk;�Þ into Eq. (3) and
performing some mathematical manipulations motivated
by [18], we get

rdrift ¼
�
�

Z k1

kmin

þ
Z 1

k2

� �rk2��4PðkÞ
D3ðk� Cð�rÞ � hkiÞ3hkidk: (7)

The order parameter r is determined by the sum of Eqs. (6)
and (7).
It is known that systems subject to the equations of

motion given by Eq. (4) present a hysteresis as � is varied
[18,20]. Therefore, we consider in the following the sys-
tem’s dynamics for two distinct cases. (i) Increasing the
coupling strength �. In this case, the system starts without
synchrony (r � 0) and, as � is increased, approaches the
synchronous state (r � 1). (ii) Decreasing the coupling
strength �. Now the system starts at the synchronous state
(r � 1) and, as � is decreased, ever more oscillators lose
synchronism, falling into the drift state.
For the case in which the coupling strength � is

increased from �0, the synchronous state emerges after a
threshold �I

c has been crossed. Here we derive self-
consistent equations that allow us to compute �I

c. In order
to do that, we first investigate how the range of degree k of
oscillators that are entrained in the mean-field depends on

FIG. 1 (color online). Parameter space of the pendulum
[Eq. (8)]. Plotted is the external constant torque I versus the
damping strength �. The red area indicates parameter combina-
tions that give rise to a globally stable fixed point. In the white
area, only a stable limit cycle exists. Yellow indicates the area of
bi-stability: both fixed point and limit cycle are stable.
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�. For convenience, we change the time scale in Eq. (5) to

� ¼ ffiffiffiffiffiffiffiffi
k�r

p
t, which yields

d2�

d2�
þ �

d�

d�
þ sin� ¼ I; (8)

where we define � � �=
ffiffiffiffiffiffiffiffi
�kr

p
and I � Dðk� hki �

Cð�rÞÞ=k�r. The variable � is the damping strength and
I corresponds to a constant torque (cf. the damped driven
pendulum [20,21]). Our change of time scale allows us to
employ Melnikov’s analysis [21] to determine the range of
integration [kI1, k

I
2] in the calculation of rI ¼ rIlock þ rIdrift.

Using Melnikov’s analysis [18,20,21] we find that,
for I > 1, Eq. (8) has only one stable limit cycle solution
(see Fig. 1). If 4�=� � I � 1, the system is bistable
and a synchronized state coexists with the limit cycle
solution. If the coupling strength is increased further by a
small amount, the synchronized state can only exist
for I � 4�=�, where Eq. (8) has a stable fixed point
solution, even for damping values close to � ’ 1
[18,20,21]. By solving the inequalities sin� � 1 and I �
4�=�, we get the following range of kI for the phase-
locked oscillators

kI 2 ½kI1; kI2� �
"
B� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 4D4ðhki þ Cð�rÞÞ2p
2D2

;
Bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 4D4ðhki þ Cð�rÞÞ2p
2D2

#
(9)

where

B ¼ 2D2ðhki þ Cð�rÞÞþ 16�2�r

�2
:

If we now substitute Eq. (9) into the self-consistent Eqs. (6)
and (7), we obtain rI and �I

c.
When the coupling strength � is decreased, the

oscillators start at the phase-locked synchronous state,
reaching the asynchronous state after a threshold �D

c . In
order to calculate the threshold, we again investigate
the range of degree k of phase-locked oscillators.
Imposing the phase locked solution in Eq. (5), we obtain

sin� ¼ jDðk�hki�Cð�rÞÞj
k�r � 1 and find that the locked oscil-

lators are the nodes with degree k in the following range as
a function of �r

kD 2 ½kD1 ; kD2 � �
�hki þ Cð�rÞ

1þ �r
D

;
hki þ Cð�rÞ

1� �r
D

�
: (10)

This allows us to calculate rD and �D
c from the self-

consistent Eqs. (6) and (7).
To check the validity of our mean-field analysis, we

conduct numerical simulations of the model with � ¼
0:1 and D ¼ 0:1 on SF networks characterized by N ¼
3000, hki ¼ 10, kmin ¼ 5 and the degree distribution
PðkÞ � k�	 with 	 ¼ 3. Again, because we anticipate
hysteresis, we have to distinguish two cases: first, we
gradually increase � from �0 by amounts of 
�, and for
� ¼ �0; �0 þ 
�; . . . ; �0 þ n
� compute the increasing
order parameter rI, where 
� ¼ 0:1. Second, we gradually
decrease � from �0 þ n
� back toward �0 by amounts of

�, this time computing the decreasing order parameter
rD. Before each 
� step, we simulate the system long
enough to arrive at an attractor.

According to Fig. 2, the dependence of the simulated
order parameter r on � indeed shows the expected hystere-
sis: for increasing �, the discontinuous transition to syn-
chrony happens at a �I

c that is far larger than the threshold

�D
c of the backwards transition for decreasing �. Seeking to

compare these simulation results to our mean-field analy-
sis, we simultaneously solve Eqs. (6), (7), and (9) [resp.
Eqs. (6), (7), and (10)] for the increasing (resp. decreasing)
case numerically to obtain analytical curves of r.
A key ingredient of the solution process is Cð�rÞ which

we retrieve from the simulation data. More specifically,
recalling that Cð�rÞ just depends on _c and €c , we assume
that (i) Cð�rÞ � 0 before the transition to synchrony, as the
nodes oscillate independently and produce an unchanging
zero mean field, and that (ii) Cð�rÞ � � _c =D after the
transition to synchrony, as the synchronized nodes domi-
nate and produce a mean field that rotates with a constant
frequency _c which we take from the simulations, cf. Fig. 3.
Figure 2 reveals that our mean-field analysis predicts the
critical thresholds �I

c and �D
c very well.

0
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1

0 0.8 1.6 2.4

FIG. 2 (color online). Comparison between numerical and
analytical results. Shown is the order parameter for increasing
(decreasing) � based on: (i) simulations, red (blue) line and
(ii) self-consistent Eqs. (7) and (6) with synchronized degree kI

in Eq. (10) [kD in Eq. (9)], green (black) line.
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What happens at the node level when the transition to
synchrony occurs? As just stated, the average frequency _c
that enters the equations via Cð�rÞ is a crucial quantity.
Seeking to understand how the different nodes contribute
to _c , for increasing � we calculate the average frequency
of all nodes of degree k, h!ik ¼

P
½ijki¼k�!i=ðNPðkÞÞ,

where !i ¼
R
tþT
t

_�ið�Þdt=T. As Fig. 4(a) reveals, nodes

of the same degree form clusters that join the synchronous
component successively, starting from small degrees. This
is in sharp contrast to the discontinuous phase transition
observed in [6], where the average frequency h!ik jumps to
hki at �I

c for all k at the same time. We call this newly
observed phenomenon cluster explosive synchronization.

In Fig. 4(b), we show the evolution of the lower and
upper limits of the range of synchronous degrees, kI1 and
kI2, as a function of the coupling strength �. Analytical
and simulation results are again in good agreement. Note
the discontinuity in the evolution of kI1 and kI2 which gives

rise to the discontinuous transition in Fig. 2. For � > �I
c,

the lower limit kI1 is kept constant, and the higher limit kI2
of the synchronous nodes grows linearly with � [Fig. 4(b)].

In summary, we have demonstrated that a cluster explo-
sive synchronization transition occurs in a second-order
Kuramoto model. As in previous studies on explosive syn-
chronization, a correlation between dynamics (natural fre-
quency of a node) and local topology (the node’s degree) is a
necessary condition. With the connection between natural
frequencies and local topology, we have presented the first
analytical treatment of cluster explosive synchronization
which is based on a mean-field approach in uncorrelated
complex networks. Our simulations are in good agreement
with the theory. Furthermore,we have shown that clusters of
nodes of the same degree join the synchronous component
successively, starting with small degrees. Our findings
enhance the understanding of cluster explosive synchroni-
zation in themacrostate of a system and its applications will
have a strong impact on the detection of clusters in larger
networks. Also, our first analytical treatment can be

extended to applications [10–13], where the use of
second-order Kuramoto oscillators is relevant.
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degrees from simulations and mean field analysis.
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