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We analyze instabilities of the collinear up-up-down state of a two-dimensional quantum spin-S

spatially anisotropic triangular lattice antiferromagnet in a magnetic field. We find, within the large-S

approximation, that near the end point of the plateau, the collinear state becomes unstable due to the

condensation of two-magnon bound pairs rather than single magnons. The two-magnon instability leads to

a novel two-dimensional vector chiral phase with alternating spin currents but no magnetic order in the

direction transverse to the field. This phase breaks a discrete Z2 symmetry but preserves a continuousUð1Þ
one of rotations about the field axis. It possesses orbital antiferromagnetism and displays a magneto-

electric effect.

DOI: 10.1103/PhysRevLett.110.217210 PACS numbers: 75.10.Jm

Introduction.—The field of frustrated quantum magne-
tism has witnessed a remarkable revival of interest in
recent years due to rapid progress in the fabrication and
characterization of new materials and a multitude of theo-
retical ideas about competing orders and new quantum
states of matter [1]. Studies of two-dimensional (2D) quan-
tum triangular lattice antiferromagnets with a spatially
anisotropic exchange, such as Cs2CuCl4 and Cs2CuBr4,
are of particular interest because of their surprisingly rich
phase diagrams in a magnetic field [2,3] which includes
novel quantum states which have no classical analogs
and display a wealth of properties which are highly sought
after for applications. The large number of different phases
involved, which reaches 9 in the case of Cs2CuBr4 [3],
reveals a highly complex interplay between quantum fluc-
tuations and anisotropy of the interactions.

One of the best understood phases of a frustrated spin
system in a magnetic field is a collinear state with a fixed,
field-independent magnetization equal to exactly 1=3 of
the saturation value. In this state, known as the up-up-down
(UUD), two spins in each triangle point up and one points
down. This quantum state preserves continuous Uð1Þ sym-
metry of rotations about the field direction and has finite
gaps in all spin excitations [4]. The UUD state is similar to
plateau states in the quantum Hall effect, although, unlike
them, it spontaneously breaks lattice translational symme-
try. An extension of the UUD state with unbroken transla-
tional symmetry has been proposed theoretically [5,6] but
not yet found experimentally.

In a classical isotropic 2D Heisenberg systems with
nearest exchange J, the UUD phase is the ground state
for just one value of the external field h ¼ 3J (1=3 of the
saturation field hsat ¼ 9J). At all other fields, spins order
in a noncollinear fashion. In an anisotropic lattice with
exchanges J and J0 (see Fig. 1), a noncollinear order wins
for all fields, so that a classically UUD phase is never a
ground state. For quantum systems, the situation is

different as quantum fluctuations favor a collinear spin
structure and compete with classical fluctuations [4,7,8].
In the isotropic case, quantum fluctuations stabilize the
UUD phase with gapped spin-wave excitations in a finite
interval of h with the width of order 1=S. In an anisotropic
case, the width of the UUD phase is determined by the
competition between 1=S, which measures the strength of
quantum fluctuations, and the degree of antisotropy of
exchange interactions (1� J0=J) (Ref. [8]). The dimension-
less parameter, which determines the UUDwidth relative to
its value in the isotropic case, is �¼ð40=3ÞSð1�J0=JÞ2
(we use the same numerical factor as in [8]). The UUD
phase persists up to a finite anisotropy �cr ¼ 4; see Fig. 1.
The boundaries of the UUD phase have been determined
from the local stability analysis [8] as the values of h at
which spin-wave dispersion softens. Of the two low-energy
spin-wave branches, one softens at the lower boundary of
the UUD phase and another at the upper boundary. Near the
critical J0=J, both spin-wave instabilities occur at finite
momenta, and each leads to a chiral, noncoplanar state
(often called a distorted umbrella), in which hSri has finite
components along both directions perpendicular to the field
[8,9] (see Fig. 1).
The analysis of the same model for S ¼ 1=2, however,

found very different states surrounding the UUD plateau
near its end point, which for S ¼ 1=2 extends all way to
J0 ¼ 0 [10]. These states are collinear spin-density wave
(SDW) states, with incommensurate spin modulations
along the field direction but no long-range order in the
transverse direction [10]. This discrepancy poses the ques-
tion of whether the phase diagram for S ¼ 1=2 is qualita-
tively different from the one at large S, or the ground states
surrounding the UUD phase are different from the ones
predicted by spin-wave theory even for large S.
In this work we revisit the large-S analysis of the UUD

state and show that the spin-wave phase diagram is incom-
plete for any S. We show that, prior to a single-magnon
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instability, the system undergoes a pairing instability, in
which the two-particle collective mode, made of magnons
from the two low-energy branches, softens at zero total
momentum of the pair. As a result, the actual instability
near the end point of the UUD phase is towards the uniaxial
state with no magnetic order in the transverse direction,
similar to the situation for S ¼ 1=2. We solve the ‘‘gap’’
equation for the two-magnon order parameter and show
that it is purely imaginary. Such an order parameter breaks
a discrete Z2 symmetry and gives rise to a bond-nematic
state with nonzero vector and scalar chiralities within
a single triangle of spins: hSA � SB � SCi � 0 and
hSA � SBi ¼ hSB � SCi ¼ hSC � SAi � 0 (vector and
scalar chiralities are proportional to each other since the
total magnetization M ¼ hSzi is finite). Such a state sup-
ports circulating spin currents (Fig. 2) and we label it a
spin-current (SC) state. We present the modified large-S
phase diagram of the model in Fig. 1.

Experimental signatures of a SC state are rather peculiar.
First, it exhibits a magnetoelectric effect because both

the spin current and electric field are odd under spatial
reflections and couple linearly [11]. As a result, spin-wave
excitations of the SC state depend linearly on E. Second,
orbiting spin currents generate charge currents, which in
turn produce staggered magnetic moments, which can be
measured by NMR and �SR [12].
The model.—We consider a system of localized spins on

an anisotropic triangular lattice with Heisenberg nearest-
neighbor interactions J and J0, subject to an external field
~h ¼ 2�BHz:

H ¼ X
r

�
JSrSrþax þ J0

X
j¼1;2

SrSrþaj � ~hSzr

�
; (1)

where a1;2 ¼ að1=2;� ffiffiffi
3

p
=2Þ connects spins on neighbor-

ing chains, and a is the lattice constant. For convenience,

we rescale ~h ¼ hS and use h for the field. The saturation
field, above which the magnetizationM reaches maximum
possible value Msat ¼ S, is given by hsat ¼ ð2J þ J0Þ2=J.
We are interested in the behavior of the system near hsat=3,
where quantum fluctuations win over classical fluctuations
and stabilize the UUD phase in a finite range of fields.
In the isotropic case, J0 ¼ J, the UUD phase exists in a
field range between hc1 ¼ ðhsat=3Þð1� 0:5=2SÞ and hc2 ¼
ðhsat=3Þð1þ 1:3=2SÞ. In the anisotropic case, J0 < J, the
width of the UUD state decreases and eventually vanishes

at �cr ¼ 4, which defines J0cr ¼ Jð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=10S

p Þ.
The excitation spectrum of the UUD phase at � � 4 can

be straightforwardly obtained by using a three-sublattice
representation for two spin-up and one spin-down
sublattices and introducing three sets of Holstein-
Primakoff bosons, a, b, and c [8,13]. One of the three
spin-wave branches describes the precession of the total
magnetization, has energy of the order hsat=3, and is irrele-
vant to our analysis. The other two branches, denoted
d1ð2Þ;k below, describe low-energy excitations. Explicitly,

H ð2Þ
uud ¼ S

X
k

ð!1d
y
1;kd1;k þ!2d

y
2;kd2;kÞ; (2)

where at small k

!1;2ðkÞ ¼ �
�
h� h0 � 1

5S
J � 3

4
Jk2

�
þ 3J

20S
Zk; (3)

Zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 10Sð6k2 � 3�k2x þ 10Sk4Þ

q
; (4)

and h0 ¼ J þ 2J0. The excitation d1;k softens at the lower

boundary of the UUD phase, at h ¼ hc1ð�Þ ¼ hend �
9J=ð40SÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4� �Þ=3p

, where hend ¼ h0½1þ 17=ð120SÞ�.
The softening happens at a finite momenta �k1 ¼
ð�k1; 0Þ, where k1 � ½3=ð10SÞ�1=2½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4� �Þ=12p �.
The excitation d2;k softens at the upper boundary h¼
hc2ð�Þ¼hendþ27J=ð40SÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4��Þ=3p

, at momenta �k2¼
ð�k2;0Þ, where k2 ¼ ½3=ð10SÞ�1=2½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4� �Þ=12p �. The
spin-wave softening at either hc1ð�Þ or hc2ð�Þ signals

FIG. 2 (color online). The structure of spin currents in the SC
state. The domain wall, denoted by a vertical (red) dotted line,
separates domains with opposite chirality �.

FIG. 1 (color online). (a) Anisotropic triangular lattice with
exchanges J and J0. (b) Distorted umbrella state. (c) Schematic
phase diagram of the model in the vicinity of the UUD end point
at � ¼ 4. Thin solid (red) lines mark single-particle instabilities
of the UUD state at hc1;c2ð�Þ. The thick solid (blue) line is the

two-particle instability line towards a spin-current state, which
emerges at � > �cr, and dotted (black) lines indicate phase
transitions between the umbrella and the spin-current state.
The dashed (red) line indicates a would-be single-particle insta-
bility, which is preempted by the two-particle instability. (Blue)
arrows in the inset on the right show the arrangement of spin
currents.
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condensation of one-magnon excitations. A Ginzburg-
Landau-type analysis shows [8] that condensation sponta-
neously breaks Z2 symmetry between degenerate minima
at �k1 and �k2. As a result, one-magnon condensation
gives rise to an incommensurate spiral order with sponta-
neously broken Oð2Þ � Z2 symmetry and a finite nonco-
planar long-range order hSx;yr i � 0.

At the end point of the plateau � ¼ 4, hc1 ¼ hc2 ¼ hend,
both spin-wave branches touch zero simultaneously at

�k0 ¼ ð�k0; 0Þ, where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð10SÞp

. The presence of
four soft modes leads to a variety of possible noncoplanar
chiral orders with nonzero hSx;yr i. However, we show below
that instead the system undergoes a preemptive pairing
instability into a state with no transverse order, hSx;yr i ¼
0, but nonetheless with a finite chirality hẑ � Sr � Sr0 i � 0.

Magnon pairing.—To analyze a possibility of a bound
state of two magnons, we need to include magnon-magnon
interaction. The derivation of the interaction Hamiltonian
is lengthy but straightforward: one has to express the

two-magnon interaction Hamiltonian H ð4Þ
uud, originally

written in terms of ak, bk, and ck bosons, in terms of the
low-energy eigenmodes d1;k and d2;k from Eq. (2). The full

transformation is given in [13]. Near momenta�k0, which
are mostly relevant to the pairing problem, this transfor-
mation simplifies to

ak ¼ fðkÞffiffiffi
2

p ðeiskd1;k � e�iskdy2;�kÞ;

bk ¼ � fðkÞffiffiffi
2

p ðe�iskd1;k þ eiskdy2;�kÞ;

ck ¼ fðkÞðd2;k � ei2skdy1;�kÞ;

(5)

where fðkÞ¼ ffiffiffiffiffi
k0

p ½ðkx�k0Þ2þk2yþð1��=4Þk20��1=4 and

sk ¼ �sgnðkxÞ=4.
Consider first � < 4, when only one boson becomes soft

at either hc1 or hc2, while the other remains massive and
can be neglected. For concreteness, consider the vicinity
of hc1, where d1 excitation softens. The magnon-magnon
pairing interaction involving only d1 bosons is

H ð4Þ
d1d1

¼ 8ðJ þ 2J0Þ
ð4� �Þ

3

N

X
p;q

dy1;k1þpd
y
1;�k1�pd1;k1þqd1;�k1�q:

(6)

This interaction is obviously strongly repulsive and does
not give rise to a bound state. The same holds for d2 mode
near hc2. As a result, one-magnon condensations at hc1 and
hc2 are the true instabilities, and the system develops a
noncoplanar spiral order at h � hc2 and h � hc1.

For � � 4, the situation is different. Magnon-magnon
interactions within d1 or d2 sectors are still repulsive, but
now we also have interaction between d1 and d2 bosons,
both of which are gapless at �k0. The d1–d2 interaction
with zero total momentum has two relevant terms: one
describes ‘‘normal’’ 2 ! 2 process with simultaneous

creation and annihilation of d1 and d2 bosons, the other
describes ‘‘anomalous’’ 4 ! 0 and 0 ! 4 processes with
simultaneous creation or annihilation of two d1 and two d2
bosons. We find that the strongest pairing interaction
involves momentum transfer �2k0 for each of the bosons
involved. The corresponding interaction reads

H ð4Þ
d1d2

¼ 3

N

X
p;q

�ðp; qÞ
�
dy1;k0þpd

y
2;�k0�pd1;�k0þqd2;k0�q

� dy1;k0þpd
y
2;�k0�pd

y
1;�k0þqd

y
2;k0�q

�
þ H:c:; (7)

where p and q are much smaller than k0, and the vertex

�ðp;qÞ¼�ðJþ2J0Þf2ðpÞf2ðqÞ!�ðJþ2J0Þ k20
jpjjqj ; (8)

where fðpÞ was introduced after Eq. (5), and the limit
stands for � ! 4. The pairing interaction with small mo-

mentum transfer, ~�ðp; qÞdy1;k0þpd
y
2;�k0�pd1;k0þqd2;�k0�q,

has a much smaller ~�ðp; qÞ which remains finite in the
limit p; q ! 0. Such interaction is then irrelevant for our
analysis.
Now observe that the sign of 2 ! 2 term is negative,

while the one of 4 ! 0 term is positive. The negative sign
of the 2 ! 2 term implies that the ‘‘normal’’ interaction
between d1 and d2 bosons is attractive and favors a pairing
with

Fk0
ðpÞ¼ hd1;k0þpd2;�k0�pi¼ ~�=jpj¼F�k0

ðpÞ: (9)

The positive sign of the 4 ! 0 term does not allow the

solution with real ~� (the corresponding coupling constant
vanishes), but instead favors a solution with imaginary
~� ¼ i�. For such solution the pairing vertex which cou-
ples to the 4 ! 0 term has an opposite sign compared to the
vertex which couples to the 2 ! 2 term, and this extra sign
change compensates the sign difference between 2 ! 2
and 4 ! 0 interactions. Note that since the Hamiltonian
(7) does not conserve the number of bosons, the order
parameter does not possess a Uð1Þ phase symmetry. In
practice, this implies that the gap equations for real and
imaginary�’s are different. And, in fact, the symmetry that
is spontaneously broken at the transition is Z2, correspond-
ing to the sign of �.

For ~� ¼ i�, the linearized ‘‘gap’’ equation reads at�¼4,

�¼ 6�

NS

X
p

ðJþ 2J0Þk20
p2

1

!1ðk0 þ pÞ þ!2ðk0 þ pÞ : (10)

Substituting the dispersions, we find

1 ¼ 1

S

3

N

X
p

k0
jpj3 : (11)

It is important that the integrand scales as 1=jpj3, so that the
2D integral over p diverges and overcomes the smallness of
1=S in the prefactor. In 1=jpj3, one power of 1=jpj comes
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from the dispersion and the other two powers are due to the
divergence of the coherence factor fðpÞ at p ! 0. Away

from � ¼ 4, jpj is replaced by ðjpj2 þ ð1� �=4Þk20Þ1=2, and
the integral in the right-hand side of (11) behaves as

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �

p
. Collecting powers of 1=S, we find that a nonzero

� emerges at �cr ¼ 4�Oð1=S2Þ.
For completeness, we also analyzed the possible pairing

with the total momentum �2k0, but found that there is no
enhancement of the kernel of the gap equation by coher-
ence factors and hence, no instability at large S.

Spin-current order.—The two-magnon instability does
not lead to a conventional spin order in the direction
perpendicular to the field because hd1;ki ¼ hd2;ki ¼ 0.
Fk0

ðpÞ 	� does not lead to modulations of Szr or the

bond order because the condensate does not contribute to
magnon density or to hSA � SBi [13]. However, one can
easily verify that for each triangle we now have hẑ � SA �
SCi ¼ hẑ � SC � SBi ¼ hẑ � SB � SAi / �, which implies
a finite vector chirality and orbital spin currents which run
in opposite directions in neighboring triangles; see Fig. 2.
Note that the sign of the Ising order parameter� determines
the sense of the spin-current circulation. In our case, vector
chirality generates a nonzero scalar chirality hSA � SB �
SCi 	� as well, because of the finite magnetization M
along the z (magnetic field) axis. For triangles separated
by distance r, ẑ � hSð0Þ � SðrÞi scales as �cosk0r.

A SC order in dimensions D> 1 is normally associated
with noncoplanar spin ordering when the spins spontane-
ously select the direction of rotation in the XY plane.
Remarkably, in our case the SC order appears in the
absence of the standard spin order in the XY plane.

The emergence of the SC order can be thought of as
spontaneous generation of a Dzyaloshinskii-Moria inter-
action. Indeed, the interaction Hamiltonian (7) can be

written as H ð4Þ
d1d2

¼ �ð9J=NÞH DM
k0

H DM
�k0

where [13]

H DM
�k0

¼ 1

6S

X
r

ẑ :Sr � ðSrþa1 þ Srþa2Þ

¼ i
X

k2�k0

f2kðd1;kd2;�k � dy1;kd
y
2;�kÞ: (12)

As a result, the development of a nonzero� can be viewed
as the appearance of a Dzyaloshinskii-Moria interaction
DðH DM

k0
þH DM

�k0
Þ, with D	�. This observation helps

us to understand the magnetoelectric effect in the SC state:
because D is a pseudoscalar, it couples linearly to an
electric field E, i.e., D ¼ D0 þD1Eþ � � � . As a result,
spin-wave excitations of the SC phase depend linearly onE.

SC order has been previously explored in one-
dimensional spin ladders [14–16] and was suggested for
a frustrated Heisenberg model in 2D [17,18]. There, how-
ever, a SC state is a spiral state, in which a continuousUð1Þ
symmetry is restored by strong quantum fluctuations [18].
In our case, spiral states are present in the phase diagram
away from the end point of the UUD phase, while the SC

state emerges as a result of a preemptive two-magnon
instability rather than due to divergent one-magnon fluc-
tuations. Our two-magnon instability (which necessary
leads to an imaginary order parameter) is also fundamen-
tally different from two-magnon instabilities with real
order parameters which lead to a spin-nematic order, either
on a site or on a bond [19–24]. Such order generally occurs
in systems with ferromagnetic exchanges at least on
some of the bonds, when there is an attractive interaction
between magnons. Here, all exchange couplings are anti-
ferromagnetic, and magnon-magnon interaction is repul-
sive. Our pairing of magnons from different branches is
conceptually similar to the interpocket pairing in multi-
band fermionic systems, such as Fe-based superconductors
with only electron pockets [25].
The phase diagram near the end point of the UUD state

has been recently analyzed in [9] in a self-consistent
semiclassical formalism. This method, however, does not
allow for the analysis of two-particle instabilities.
Comparison with SDW state.—Although our analysis

uses 1=S expansion, it is nevertheless instructive to com-
pare symmetry properties of our spin-current state with that
of a collinear SDW state observed for S ¼ 1=2 near the end
point of the UUD phase. Like we said, the spin-current
state is much closer to the SDW state than a spiral state
(the result of one-magnon condensation) because both
spin-current and SDW states preserve Uð1Þ symmetry of
rotations about the field direction. But the two states do
differ as the SDW state has no chiral order [10]. It may be
that S ¼ 1=2 is simply special and the nonchiral SDW
state is only present at S ¼ 1=2. But it also may be that
the two-magnon instability, which we found, is only a ‘‘tip
of the iceberg,’’ and the two-magnon condensation triggers
the development of multimagnon condensates at some
� > �cr, which in turn changes the properties of the spin-
current state. This last possibility is inspired by the obser-
vation that SDW state is incommensurate and that the
UUD-SDW transition for S ¼ 1=2 is a commensurate-
incommensurate transition [10]. Such a transition occurs
via a proliferation of solitons—strings of displaced spins
which are shifted from their equilibrium UUD pattern.
Since changing the direction of a single spin S requires
2S magnons, a proliferation of solitons implies the con-
densation of 2Smagnons per every displaced spin. Then, in
the magnon description, a commensurate-incommensurate
transition involves a condensation of an infinite number of
magnons. One can imagine, by analogy with coupled
superconducting and spin density orders [26], that the
proliferation of SC domain walls, depicted in Fig. 2, may
cause the appearance of an incommensurate modulation of
hSzi due to ‘‘density-density’’ type coupling between the
magnon density and the density of domain walls. Whether
or not this is the case requires going beyond the instability
condition (11) and analyzing the excitation spectrum and
interpair interactions within the spin-current phase [27].
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Conclusions.—We have described a novel two-magnon
pairing instability of the up-up-down phase of the spatially
anisotropic triangular lattice antiferromagnet in a magnetic
field. The magnon pairing is of ‘‘interband-type’’ in that
the condensate is made out of bosons from the two differ-
ent spin-wave branches. This instability preempts a single-
magnon condensation for arbitrary spin S and gives rise to
a highly unconventional 2D order in which transverse spin
components are disordered, yet the ground state has a
nonzero vector chirality on every lattice bond and circulat-
ing spin currents in every elementary triangle. This state
breaks Z2 chiral symmetry but preservesUð1Þ symmetry of
rotations about the field direction. The development of
such a phase can be thought of as a spontaneous generation
of the Dzyaloshinskii-Moriya interaction. This new state
exhibits a magnetoelectric effect, which gives rise to a
nontrivial linear dependence of spin-wave excitations on
the applied electric field E, and also has staggered mag-
netic moments, which can be measured by NMR and�SR.
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