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Thermal transport measurements have been made on the spin-ice material Ho2Ti2O7 in an applied

magnetic field with both the heat current and the field parallel to the [111] direction for temperatures from

50 mK to 1.2 K. A large magnetic field >6 T is applied to suppress the magnetic contribution to the

thermal conductivity in order to extract the lattice conductivity. The low field thermal conductivity thus

reveals a magnetic field dependent contribution to the conductivity which both transfers heat and scatters

phonons. We interpret these magnetic excitations as monopolelike excitations and describe their behavior

via existing Debye-Hückel theory.
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The search for isolated magnetic monopoles as elemen-
tary particles has captivated physicists since Dirac’s
seminal work of the 1930s. The most recent chapter in
this area involves the idea of monopoles as emergent
particles manifested in the collective behavior of a large
number of interacting spins. Such exotic physics has
recently been theoretically proposed to exist in frustrated
magnetic systems known as spin ice [1].

One example of a spin-ice material is Ho2Ti2O7 (HTO),
a rare-earth titanate which crystallizes in the pyrochlore
structure, which puts the spins due to the Ho3þ ions on the
vertices of a lattice of corner-sharing tetrahedra. The
ground state is a nearly perfect Ising system such that
the large magnetic moment � ¼ 10�B is quantized along
the local [111] direction (into or out of each tetrahedron)
[2]. The effective magnetic interaction between these spins
is ferromagnetic with a remarkable consequence for the
ground state, which is macroscopically degenerate with
the spins arranged so that two spins point into each tetra-
hedron and two spins point out of each tetrahedron (i.e.,
there is a sixfold degeneracy for each tetrahedron) [2].
The name spin ice derives from the degeneracy of the
ground state, which gives rise to a residual entropy of
S ¼ ðkB=2Þ lnð3=2Þ per spin and is well approximated by
the Pauling entropy in water ice resulting from proton
disorder [3].

Excitations out of the 2-in-2-out ground state are
theoretically proposed to be analogous to ‘‘magnetic
monopole–like’’ quasiparticles. The reasoning is that a
single spin flip will create a tetrahedron with 3 spins in
and 1 out (monopole) and a tetrahedron with 1 spin in and 3
out (antimonopole) as a consequence of the corner-sharing
tetrahedra. Once this initial energy barrier is overcome,
subsequent spin flips required to separate the monopole-
antimonopole pair do not further violate the 2-in-2-out ice

rules and thus they behave as ‘‘free’’ particles interacting
with a Coulomb interaction [1].
Experimentally, the spin-ice ground state in HTO and in

isostructural Dy2Ti2O7 (DTO) has been established
through measurements of the specific heat, which when
integrated lead to a residual ground state entropy that is in
close agreement with the Pauling value [4–8].
Conversely, measurements attempting to observe mag-

netricity, a magnetic monopole current in spin ice, are less
definitive. Initial muon spin rotation measurements of
DTO [9], which mapped the monopole current onto
Onsager’s theory of electrolytes, are now the subject of
debate over exactly where the muon signal originates
[10,11]. Moreover, measurements of the electromotive
force induced in a solenoid from a relaxing magnetic
current [12] infer magnetic relaxation times that are not
observed in more recent magnetic susceptibility measure-
ments [13].
In this Letter, we present thermal conductivity measure-

ments of HTO in the very low temperature range with a
magnetic field along the [111] crystallographic direction.
Our goal is to shed light on the properties of the magnetic
excitations and to see to what extent they can be described
by a theory of magnetic monopoles. Thermal conductivity
is an excellent tool for probing the behavior of delocalized
quasiparticles in materials, for example, superconducting
quasiparticles [14] or magnons [15]. In spin-ice materials,
similar experiments have been conducted in DTO [16,17].
However, in these works, the magnetic excitations were
assumed to be either localized and only affect the thermal
conductivity through their interaction with phonons [16],
or delocalized and conduct heat but have no affect on the
phonon conductivity [17]. Our results provide clear evi-
dence that the magnetic excitations act both as a channel
for heat transport and as a strong scattering mechanism for
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phonons. We also find that the temperature dependence of
the heat transport and scattering rate are consistent with
current theoretical models that describe the magnetic exci-
tations as monopoles.

A large single crystal of HTO was grown using the
floating-zone image method [18]. From this, we prepared
two thin rectangular prisms with dimensions 0:34�
0:35� 2:0 mm3 (large sample) and 0:10� 0:17�
0:35 mm3 (small sample) with the [111] axis parallel to
the long axis. Samples of different dimension are measured
to help rigorously identify the phonon conductivity as we
show below. Thermal conductivity (�) was measured via
the one-heater–two-thermometer method [19] with the
heat current and applied magnetic field (B) parallel to the
[111] axis for temperatures from T ¼ 50 mK to 1.2 K.
Quasistatic temperature sweeps were conducted in a vari-
ety of applied magnetic fields between the spin-ice state at
0 T, the plateau ‘‘kagome-ice’’ state at approximately 0.5 T
and in the 3-in-1-out or 1-in-3-out state at 6, 8, and 10 T.
For each sweep, the resistive thermometers were calibrated
in situ against the dilution fridge temperature. These ma-
terials are known to exhibit long time constants at low
temperature [20]. Extreme care was taken to ensure the
sample was thermally equilibrated with the fridge at each
temperature step by waiting for up to 1:5� 104 s at the
lowest temperatures before measuring. Thermal conduc-
tivity was measured at 190 mK for 24 h, which showed no
sign of evolution beyond 1:5� 104 s, thus ensuring our
settling time was adequate. The magnetic field was applied
at sample temperatures above 1.5 K and the samples sub-
sequently field cooled to perform temperature sweeps. The
absolute error in the conductivity values is dominated by

an uncertainty of�10% in the geometric factor in the large
sample and �20% in the smaller sample. The relative
uncertainty between each data set is less than 1%, as
illustrated by the error bar in Fig. 2.
Figure 1 presents �=T versus T for the large sample

in applied magnetic fields of 0 T and 6, 8, and 10 T. The
in-field data at 6, 8, and 10 T are all identical within
experimental error below T ¼ 0:8 K. Above this tempera-
ture, the 6 T data are systematically higher at the few
percent level. The 0 T data show an increase in conductiv-
ity over the in-field data for T < 0:65 K. Above T ¼
0:65 K, the zero field conductivity is suppressed below
the in-field data which indicates the presence of an addi-
tional scattering mechanism. Identical qualitative features
are also observed in the small sample. However, the con-
ductivity grows less rapidly at the lowest temperatures (see
inset of Fig. 3), which, as we discuss below, is consistent
with the smaller sample dimensions.
In a magnetic insulator, the thermal conductivity has two

contributions: the lattice (phonons) and magnetic excita-
tions. In order to observe the effect of magnetic excitations
on the thermal conductivity, either as a phonon scattering
mechanism or as a conductivity channel itself, the phonon
conductivity must be established in the absence of any
magnetic excitations. This is often achieved via measuring
a nonmagnetic, isostructural material. However, in this
case we obtain the phonon conductivity by using a large
magnetic field to drive the system into a magnetically
ordered state where magnetic excitations are strongly sup-
pressed. This technique has been successfully used in other
magnetic systems [21]. In HTO, a field of 2.5 T along the
[111] direction is sufficient to break the 2-in-2-out ice
rules, resulting in a 3-in-1-out or 1-in-3-out state where
the magnetization becomes constant with magnetic field
[22]. This is consistent with our observation that the
temperature dependence of the thermal conductivity is
constant for magnetic fields from 6 to 10 T. As a result,
we consider the 6, 8, and 10 T thermal conductivity to be
entirely due to phonons. Conversely, the zero field con-
ductivity includes magnetic contributions to both conduc-
tion and scattering.
Further analysis of the phonon conductivity is done by

examining the phonon mean free path lph. This can be

extracted from the phonon thermal conductivity (�ph) via

kinetic theory:

lph ¼ 3
�ph

cphvs

; (1)

where cph ¼ 4:8T3 � 10�4 JK�1 mol�1 [8] is the phonon

specific heat, vs ¼ 3:2� 103 ms�1 [23] is the speed of
sound, and �ph ¼ �totalð8 TÞ (choosing the 8 T data set as

representative of the in-field data). The mean free path, lph,

normalized by the geometric average of the sample width,

d ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4A=�

p ¼ 0:41ð0:15Þ mm for the large (small) sam-
ple, is plotted versus temperature in the inset of Fig. 1,
where A is the sample cross-sectional area. As the
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FIG. 1 (color online). Thermal conductivity divided by tem-
perature is plotted versus temperature for the large HTO sample
with heat current along the [111] direction in magnetic fields of
B ¼ 0, 6, 8, 10 T applied parallel to [111]. Inset: The tempera-
ture dependence of the phonon mean free path lph divided by

sample width d for the large and small samples at 6 and 8 T.
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temperature approaches T ¼ 0, the phonon scattering
becomes temperature independent and the mean free path
approaches a value close to the sample dimensions
(Casimir limit). In the smaller sample, the boundary limit
is achieved at a higher temperature (�200 mK) consistent
with the shorter mean free path.

As the temperature is increased, the reduction of the
phonon mean free path from the boundary limited value
indicates the presence of additional temperature dependent
scattering mechanisms. This is described using kinetic
theory and Matthiessen’s rule:

�ph ¼ �totalð8 TÞ ¼ 1

3

cphv
2
sP

i �i

; (2)

where �i are the scattering rates from different nonmag-
netic mechanisms. These scattering mechanisms may
include the sample boundaries (�B � vs=d), dislocations
(�D � T), and point defects (�PD � T4) [24]. In order to fit
the phonon conductivity, the functional forms of the dis-
location and point defect scattering terms are exact and the
coefficients are left as fitting parameters. These fitting
parameters are expected to be sample independent since
they are cut from the same single crystal. Conversely, the
coefficient of the boundary scattering term is determined
by the sample dimensions (and the phonon specific heat
and the speed of sound) through Eq. (1). The simplest
functional form of the conductivity due to boundary scat-
tering is proportional to T3 with the temperature depen-
dence coming entirely from the phonon specific heat,
Eq. (2). However, a more realistic functional form has an
exponent slightly below 3 due to the effects on thermal

conductivity from specular and diffuse boundary scatter-
ing, as has been examined in depth in other insulating
materials [15,25–27]. The results of this analysis using
one set of parameters are shown for both samples in the
inset of Fig. 3. The best fit is achieved for a boundary
scattering conductivity displaying a T2:85 temperature
dependence in addition to dislocation and point defect
terms [28]. Despite its simplicity, this model for the pho-
non conductivity clearly shows the dominance of boundary
scattering at the very lowest temperatures including the
correct scaling with sample size. At higher temperatures
(>0:2 K), the scattering is dominated by temperature
dependent terms, which we model as point defects and
dislocations and are the same for both samples. Although
the exact origin is unknown, such terms are consistent with
recent Monte Carlo modeling of magnetic susceptibility
measurements in DTO, which inferred 0.03% stuffing
(excess magnetic Dy ions on Ti sites) [29]. Such inter-
ion substitution would undoubtedly have an impact on
phonon transport.
Turning now to the magnetic excitations, Fig. 2 shows

the zero field and other low field runs less the 8 T data for
the large sample. This illuminates the magnetic field
dependence of the increased conductivity at low tempera-
tures (T & 0:65 K) followed by the large decrease in
conductivity as temperature increases, with respect to
�ph ¼ �totalð8 TÞ. Within the magnetic monopole picture,

the source of additional magnetic conductivity at low
temperature is delocalized magnetic monopole excitations.
At the lowest temperatures the density of monopoles is
sufficiently low that they do not cause scattering. As the
temperature is increased, the density increases rapidly and
they strongly scatter each other and the phonons, resulting
in the suppressed conductivity. Furthermore, the increased
(magnetic) conductivity below 0.65 K is suppressed by an
applied magnetic field. Qualitatively, a possible explana-
tion of this is as follows. From the perspective of the [111]
direction, the corner-shared tetrahedra on which the Ho3þ
ions reside can be viewed as a stack of alternating kagome
and triangular planes. Introducing an externally applied
magnetic field along the [111] direction will polarize the
spins in the triangular lattice and effectively decouple the
intervening kagome planes yet retain the 2-in-2-out ground
state. This is known as the kagome-ice state [22]. In this
state, magnetic excitations are confined to the kagome
planes which are perpendicular to the direction of heat
flow and thus do not contribute to the conductivity.
However, these excitations will continue to scatter the
phonons, and hence the decrease in conductivity above
T � 0:65 K remains. The inset of Fig. 2 shows the differ-
ence between the 0 T data and the high field (6 and 8 T)
data for the small sample. The qualitative temperature
dependence is the same as for the large sample.
However, the magnitude of the magnetic contribution of
the small sample is less than that of the large sample, which
is not understood.
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FIG. 2 (color online). Difference between thermal conductiv-
ity at 8 T, �ð8 TÞ, and the low field conductivity, �ðBÞ, for the
large sample with B ¼ 0, 0.1, 0.2, 0.5 T. The magnetic contri-
bution to the conductivity obtained from fitting is also included
(solid blue line). Inset: Difference between the 0 T conductivity
and high field conductivities with B ¼ 8 T and B ¼ 6 T for the
small sample.
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The low field thermal conductivity clearly shows that the
magnetic excitations conduct heat and provide a scattering
mechanism. Therefore, analysis of the 0 T data must
include a magnetic contribution to the conductivity �mag

(in addition to �ph) and also a magnetic contribution to the

phonon scattering �mag. Thus, �totalð0 TÞ can be written

using Matthiessen’s rule as

�totalð0 TÞ ¼ �mag þ 1

3

cphv
2
s

�mag þ
P

i �i

¼ �mag þ
�

3

cphv
2
s

�mag þ 1

�totalð8 TÞ
��1

: (3)

The functional form of the magnetic contribution to the
conductivity �mag is unknown. However, assuming that the

main scattering mechanism at the lowest temperatures is
due to point defects and is therefore temperature indepen-
dent, we use the form expected for massive excitations in
three dimensions such that �mag � T2 [30]. As the tem-

perature increases, we assume that the monopoles interact
with each other such that their scattering rate is propor-
tional to the monopole density �ðTÞ. Thus, the total mag-
netic contribution to the thermal conductivity can be
written as �mag ¼ T2½A1 þ A2�ðTÞ��1, where A1 and A2

are fitting parameters. As shown in Fig. 2, this simple
model provides an excellent fit to the data at low tempera-
tures where the density of monopoles is low, the scattering
of phonons is small, and the subtraction accurately reflects
the magnetic contribution alone. Beyond the peak, the

number of monopoles proliferates and the scattering
affects both the magnetic and phonon conductivity so the
subtracted data include the suppression of both phonons as
well as the monopole current.
As a first approximation, the magnetic-phonon scatter-

ing rate is assumed to be proportional to the monopole
density, �mag / �ðTÞ. The monopole density can be deter-

mined from the dressed energy �d required to create an
isolated monopole using Debye-Hückel theory [31]:

�ðTÞ / 2e��d=T

1þ 2e��d=T
� e��d=T ðT ! 0 KÞ: (4)

Using the dressed energy for monopole creation accounts
for the reduction in the bare energy, � ¼ 5:8 K [31], of
creating an isolated monopole due to the screening effect
of any surrounding monopoles on the Coulomb interaction
between a monopole-antimonopole pair. The dressed and
bare energies are related by

�d ¼ �� Enn

2

ad
�Debye

; (5)

where the screening length �Debye is determined in turn by

the monopole density

�Debye

ad
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ffiffiffi
3

p
�Enn

s ffiffiffiffiffiffiffiffiffiffi
T

�ðTÞ

s
: (6)

Here, ad ¼ 4:34 �A is the distance between the centers of
neighboring tetrahedra (i.e., the nearest neighbor distance
between monopoles) and Enn ¼ 3:06 K is the Coulomb
energy of two monopoles on neighboring sites. There is
no analytical solution to Eqs. (4) and (6) which must be
solved self-consistently.
To access the monopole-phonon scattering, we fit the

full zero field data to Eqs. (3) and (6). For the large sample,
the result is seen in Fig. 3 along with the individual
components to the conductivity, �mag and �ph. From a

qualitative standpoint, the description of the temperature
dependence is excellent. This indicates that not only is the
additional transport provided by the magnetic excitations
well described by our model, but also the monopole-
phonon scattering is proportional to the temperature de-
pendence of the monopole density. Quantitatively, the only
fitting parameters are the coefficients of the T2 term in �mag

and the coefficient of the �ðTÞ term in �mag [32]. The

monopole-phonon scattering rate obtained from our fit at
T ¼ 500 mK is approximately 108 s�1, which is the same
order of magnitude reported for the magnetic scattering of
phonons (��) in DTO [16]. Moreover, the magnitude of

�mag can be assessed using kinetic theory. Following

Kolland et al. [17], a monopole velocity of �20 m=s
(generated from an effective bandwidth for monopole
hopping �1 K and a hopping distance ad) is assumed.
We also take the measured magnetic specific heat for
DTO as 256:4 J=Km3 at 400 mK [33]. Then, using our
value for �mag � 2:2� 10�3 W=Km for the large sample
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FIG. 3 (color online). Total zero field thermal conductivity for
the large sample (pink circles) fitted to Eq. (4) (black line) such
that �mag ¼ T2½A1 þ A2�ðTÞ��1 and �mag / �ðTÞ. The individ-

ual components to the conductivity, �mag (blue line) and �ph

(green line), are also represented. Inset: Thermal conductivity in
an applied field of 8 T for the large (black circles) and small (red
squares) samples. These data are fitted using kinetic theory
described in Eq. (2) (solid lines).
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at 400 mK, we obtain a mean free path, lmp � 1:3 �m.

This is likely an upper bound on lmp given that the mag-

netic specific heat may well be much smaller in HTO, but
the presence of the Schottky anomaly makes obtaining a
definite value more difficult [5]. A more important issue
is whether the kinetic theory really makes sense. For
instance, the monopole velocity could equally be estimated
from the Monte Carlo time step, 0.26 ms at 700 mK [29], or
from a hopping frequency, 1:8� 103 s�1, taken from mag-
netic relaxation experiments [12]. In both cases, this leads
to a velocity �106 times smaller than estimated from the
hopping bandwidth and a mean free path of order meters,
which is many orders of magnitude larger than the sample.
Clearly, further theoretical work will be required to see
how to make sense of the magnitude of the conductivity.
We do not expect a contribution from collective magnetic
excitations such as loop flips described by Melko and
Gingras [4] as they are not experimentally accessible at
these temperatures due to a large energy barrier.

In conclusion, we have shown that the magnetic excita-
tions of the spin-ice ground state of Ho2Ti2O7 give rise to
an additional channel for thermal conduction and also
prove to be an effective phonon scattering mechanism.
We have also shown that the magnetic conductivity chan-
nel is consistent with monopoles scattering from point
defects and each other. Similarly, the magnetic phonon
scattering rate is proportional to the monopole density, as
determined by Debye-Hückel theory. This provides strong
evidence that these excitations can be thought of as delo-
calized, magnetic monopolelike quasiparticles.
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