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Several scenarios for the realization of edge Majorana modes in quantum chain systems, spin chains,

chains of Josephson junctions, and chains of coupled cavities in quantum optics, are considered. For all

these systems excitations can be presented as superpositions of a spinless fermion and a hole, character-

istic of a Majorana fermion. We discuss the features of our exact solution with respect to possible

experiments, in which edge Majorana fermions can be directly observed when studying magnetic,

superconducting, and optical characteristics of such systems.
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Majorana fermions (MFs) are particles identical to their
own antiparticles. They may appear as elementary neutral
particles, or emerge as quasiparticles in many-body sys-
tems [1]. During recent years, MFs, in addition to being of
fundamental interest on their own, have attracted great
attention as the basis for potential application in topologi-
cal quantum computation [2]. The search for MFs is among
the most prominent tasks for modern physicists. During the
last few years great progress has been achieved in such a
search in condensed matter physics. Obviously, we cannot
expect MFs to exist in ordinary metals because excitations,
electrons—considered as quasiparticles there—and their
counterparts, holes (which linear combination would cor-
respond to the MFs), can destroy each other: they carry
opposite charges. Hence, the search in different, nonstan-
dard systems of fermions with special properties, where
MFs can exist as emergent nontrivial excitations, is neces-
sary. Superconducting systems seemingly provide a basis
for such states, because elementary excitations there are
superpositions of electrons and holes. However, for con-
ventional superconductors with, e.g., s-wave pairing, those
superpositions of electrons and holes carrying opposite
spin are different from Majorana’s construction. Then it
follows that for a system of spinless fermions with pairing,
like, e.g., model superconductors with p pairing in one-
dimensional (1D) systems [3] or with (pþ ip) pairing in
2D systems [4], MFs can emerge. Among the most well-
known predicted candidates for MF existence are topologi-
cal insulators [5] and semiconducting quantum wires [6],
where pairing can be achieved by interfacing them with an
ordinary superconductor. The modern ‘‘state of the art’’ of
theoretical predictions for realizations of such systems has
been recently reviewed, e.g., in Ref. [7]. While recent
papers [8] claim that they have observed zero bias anoma-
lies in the tunneling conductance of normal conducting and
superconducting systems, which can be explained by the
presence of zero energy MFs, very recent publications
mention that in those experiments the spatial resolution

might not be enough to detect MFs and that disorder can
result in zero bias features [9] even for nontopological
systems (where MFs are absent). That is why proposals
for realization of direct observations of MFs are highly
desirable.
In this Letter we consider several scenarios for the direct

observation of edge MFs in quantum chains, which can be
realized in quantum magnetic, superconducting, and opti-
cal systems. For all these systems, excitations can be
presented as superpositions of spinless fermions and holes,
the hallmark of MFs. We choose 1D systems because exact
theoretical results can be obtained there, which is very
important for comparison with experiment, and because
of the significant success in fabrication and manipulation
of quasi-1D materials in recent years. We propose to use an
external parameter, which directly governs the behavior of
the edge MFs in those quantum chains.
To set the stage, we start with the consideration of the

spin-1=2 chain, whose Hamiltonian is

H 0 ¼ � XN�1

n¼1

ðJxSxnSxnþ1 þ JyS
y
nS

y
nþ1Þ � J0xSx0Sx1

� J0yS
y
0S

y
1: (1)

Here Sx;yn are operators of the projections of spin-1=2 at the
nth site, and Jx;y (J

0
x;y) are coupling constants for the host

(impurity situated at the site n ¼ 0). To realize the mani-
festation of edge MFs in observable characteristics, we
propose to study the system with the Hamiltonian H ¼
H 0 � hSx0. The local field h, acting at the edge site of

the chain, can be realized if the spin chain system neigh-
bors a ferromagnet that is magnetized along the x axis.
Let us (formally) add the spin S�1 at the left edge
of the chain with the coupling �2hSx0S

x�1, to study

the Hamiltonian HM¼H 0�2hSx0S
x�1 instead of H

[10,11]. We see that TrNþ1ð�Sx0Þ ¼ TrNþ2½�MS
x
0ð1þ

2Sx�1Þ� � 2TrNþ2ð�MS
x
0S

x�1Þ, where � (�M) is the density

matrix with the Hamiltonian H (HM). It means that to
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obtain the average value of the operator of edge spin
projection with H , we can calculate the one for the pair
correlation function with HM. After the Jordan-Wigner
transformation with Dirac creation (destruction) fermionic

operators dym (dm) we get

HM ¼ � 1

2

�
hðdy�1d0 þ dy�1d

y
0 þ H:c:Þ

þ I0ðdy1d0 þ dy0d1Þ þ J0½dy1dy0 þ d0d1�

þ XN�1

n¼1

ðI½dyndnþ1 þ dynþ1dn�

þ J½dyndynþ1 þ dnþ1dn�Þ
�
; (2)

where I, J ¼ ðJx � JyÞ=2, I0, J0 ¼ ðJ0x � J0yÞ=2. In what

follows we consider the limitN ! 1 (semi-infinite chain).
Equation (2) is, in fact, the Hamiltonian of the inhomoge-
neous Kitaev toy model [3]. (The Hamiltonian of the
homogeneous Kitaev toy model has the same form as the
fermionic representation for the Hamiltonian of the XY
spin-1=2 chain introduced in Ref. [12].) Here I ! w, w is
the hopping parameter of spinless electrons, and J ! j�j,
with � the induced superconducting (SC) gap, or the
p-wave pairing amplitude of the 1D topological supercon-
ductor [5,7], or a quantum wire [6,7] with zero chemical
potential of electrons and with inhomogeneities of hopping
amplitudes and gaps near the edge of the chain. Zero
chemical potential in Kitaev’s model permits the topologi-
cal superconductivity, i.e., the weak pairing regime, in
which the size of a Cooper pair is infinite (see below).
The model Eq. (2) can also describe the 1D system of
coupled cavities with strong in-cavity photon-photon
repulsion and nonlinear photon driving [13] in the cavity
quantum electrodynamics. There necessary redefinitions

are J ! �̂, where �̂ is the magnitude of the photon driv-

ing, and I ! Ĵ, where Ĵ is the tunneling amplitude for
photon hopping between nearest neighbor cavities. The
term with h describes the interaction of the edge cavity
with the light [13]. Our model is related to photons being in
resonance with cavities. It has been also pointed out
recently that Kitaev’s model can be realized in 1D arrays
of Josephson junctions [14], the chain of SC islands
coupled via strong Josephson junctions to common ground
superconductors. Each island contains a pair of MFs at the
endpoints of a semiconductor nanowire. The parameters of
our Hamiltonian are related to the one of the inhomoge-
neous array of Josephson junctions as Jy ! EM, where EM

is the tunnel coupling of individual electrons between SC
islands, Jx ! U, where U ¼ �U cosð2�q=eÞ is the tunnel-
ing amplitude due to the Aharonov-Casher interference
caused by the effective capacitance coupling between
two islands (e is the electron charge and q ¼ CgVg is the

induced charge, where Cg is the capacitance to a common

back gate at voltage Vg with respect to the ground super-

conductor). Finally, h ! ~�, where ~� ¼ �� cosð�q=eÞ is

the charging energy. and U and ~� can be tuned through the
inhomogeneous gate voltage at each SC island. We can
also consider the term with the boundary field h in H as
Andreev’s tunneling.

Then we introduce MFs as cB;j ¼ dj þ dyj , cA;j ¼
�iðdj � dyj Þ, with cy�;m ¼ c�;m, which satisfy anticommu-

tation relations fc�;n; c�;mg ¼ 2��;��m;n (�, � ¼ A, B). In

MFs Eq. (2) reads

HM ¼ � i

4

�XN�1

n¼1

ð½J þ I�cB;ncA;nþ1 þ ½J � I�cA;ncB;nþ1Þ

þ 2hcA;�1cB;0 þ ðJ0 þ I0ÞcB;0cA;1
þ ðJ0 � I0ÞcA;0cB;1

�
: (3)

Without the interaction with the (artificial) spin at the site
n ¼ �1 the term in the Hamiltonian H , which describes
the action of the edge field h, has the form�ðh=2ÞcB;0; i.e.,
it is linear in MF operators. Hence, the parameter h governs
the behavior of the edge MFs. The formal introduction of
the spin at site n ¼ �1 to the Hamiltonian HM is related
to the addition of the new (artificial) MFs (cf. Refs. [3,7]),
interacting with the linear edge MFs. The total term,
proportional to h in HM, becomes quadratic in MFs.
To diagonalize the HamiltonianHM we use the unitary

transformation dn ¼ P
�ðun;�d� þ vn;�d

y
�Þ, where �’s are

quantum numbers, which parametrize all eigenstates of the
diagonalized Hamiltonian. These quantum numbers can
describe extended (band) states. Besides, there is a possi-
bility of localized states, caused by h � 0, I0 � I, and J0 �
J. Let us define Pn;�;Qn;� ¼ un;� � vn;�, i.e., the transfer

to MFs dn ¼ ð1=2ÞP�ðPn;�cB;� � iQn;�cA;�Þ. We obtain

two sets of eigenstates. The first set of solutions describes
nonzero Pn;� for even n and nonzero Qn;� for odd n (all

other P’s and Q’s are zeros). The second set of solutions
describes nonzero Pn;� for odd n, and nonzero Qn;� for

even n (others are zeros). The details of calculations, and
the eigenfunctions Pn;� and Qn;�, of the Hamiltonian are

presented in the Supplemental Material [15]. The energies
of the extended (band) states for both sets are "2k ¼
I2cos2kþ J2sin2k. As for the localized modes, their ener-
gies can be written as

4"2ð1;2Þ ¼ I2½rð1;2Þ þ r�1
ð1;2Þ�2 � J2½rð1;2Þ � r�1

ð1;2Þ�2; (4)

where lnðrð1;2ÞÞ play the role of the localization radii. We

get for the localized state of the first set of eigenfunctions

r2ð1Þ ¼
ðI� JÞ

2ðI þ JÞ½ðI � JÞ2 � ðI0 � J0Þ2� ð4h
2 þ ðI0 � J0Þ2

� 2ðI2 þ J2Þ � ½ð2h� I � JÞ2 þ ðI0 � J0Þ2
� ðI � JÞ2�1=2½ð2hþ I þ JÞ2 þ ðI0 � J0Þ2
� ðI � JÞ2�1=2Þ: (5)
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This state exists if ½ð2h�I�JÞ2þðI0 �J0Þ2�ðI�JÞ2��
½ð2hþIþJÞ2þðI0 �J0Þ2�ðI�JÞ2�>0. Notice that
jrð1Þj< 1; i.e., the localized state decays with the distance

from the edge of the chain. Even for the homogeneous case
I0 ¼ I, J0 ¼ J for I þ 3J > 0 such a localized mode exists
at h � 0. For the second set we obtain r2ð2Þ ¼ ðI2 � J2Þ=
½ðI0 þ J0Þ2 � ðI � JÞ2�. It does not depend on h. It is easy
to check that for I0 ¼ I and J0 ¼ J such a localized state
does not exist.

The ground state wave function jGSi (d�jGSi ¼ 0) can

be written as jGSi / Q
�½1þ ’CP

n;�d
y
��d

y
��j0i, where the

wave function of Cooper-like pairs is ’CP
n;� ¼ vn;�=un;�.

For the considered model(s) we have ’CP
n;� ¼ const (see

the Supplemental Material [15]); hence Kitaev’s topologi-
cal arguments [3] are valid for the considered model(s). It
means that the models are in the topologically nontrivial
weak pairing phase. For extended states MFs are coupled at
adjacent sites of the chain (with superscripts B, n and A,
nþ 1), and the edge of the chain produces the unpaired
MFs. The parameter h helps us to realize such MFs in
observable characteristics. It is important that in the case of
periodic boundary conditions, e.g., in the 1D topological
superconductor ring, such an unpaired MF is combined
with the one at the other edge of the chain [3,7,11] into the
highly nonlocal Dirac fermion. Equally important, the
energy of such isolated MFs can become nonzero, e.g., h
dependent. Without inhomogeneities edge MFs become
zero modes in the limit N ! 1. The nonzero edge field
h, actually, removes the degeneracy of the chain,
cf. Ref. [11].

Using the obtained total set of eigenvalues and eigen-
functions (see the Supplemental Material [15]) we can
calculate any average characteristic of the considered
model. For example, for m ¼ 0; 1; . . . we have

hcB;2mcA;2mþ1i ¼ i
X
�

P2m;�Q2mþ1;� tanh
"�
2T

;

hcB;2m�1cA;2mi ¼ i
X
�

Q2m�1;�P2m;� tanh
"�
2T

; (6)

where the thermal averaging with the density matrix,
determined by the Hamiltonian HM, is performed (T is
the temperature). We also get

hcA;2mcB;2mþ1i ¼ i
X
�

Q2m;�P2mþ1;� tanh
"�
2T

;

hcA;2m�1cB;2mi ¼ i
X
�

P2m�1;�Q2m;� tanh
"�
2T

; (7)

i.e., hcB;ncA;nþ1i ¼ 4ihSxnSxnþ1i is determined by the first set

of eigenstates (because the contribution of the second set is
zero), while hcA;ncB;nþ1i ¼ �4ihSynSynþ1i is determined by

the second set of eigenstates (zero contribution from
the first set). The average value hcB;0i � 2hSx0i with the

HamiltonianH is equal to 4hSx�1S
x
0iwith the Hamiltonian

HM; i.e., in such a way, by observing hSx0i in the spin chain

one can directly observe the average value of the MF
operator. Notice that hcA;0i ¼ �2ihSy0i ¼ 0. In addition,

we obtain hcB;ncA;ni ¼ 0 valid for any h and T (for zero

chemical potential in Kitaev’s model). Each of the obtained
observables is determined by extended and localized states.
These average values can be related to the characteristics
of Kitaev’s model [3], the chain of coupled cavities with
strong in-cavity photon-photon repulsion and nonlinear
photon driving [13], and the chain of SC islands coupled
via strong Josephson junctions to common ground super-
conductors [14]. The term, proportional to h inH , i.e., the
edge MFs, for Kitaev’s model and the model of Josephson
junctions is related to the edge charge, caused by the local
applied potential, or to Andreev’s tunneling. For the quan-
tum optics model the term, proportional to h, describes the
state of the cavity at the edge of the chain (e.g., the
magnitude of the photon of light, proportional to the light
absorption by the edge cavity). In Table I we list possible
realizations of edge MFs in considered systems. There
ehn0i is the charge of an edge SC island [14], and b0
(by0 ) are the destruction (creation) operators for the photon
in the edge cavity [13].
So, the presence of the edge MFs can be seen from the

features of temperature- and h-dependent behavior ofM �
ð1=2ÞhcB;0i. In fact, we see that the parameter h governs the

behavior of the edge MFs. For h ¼ 0we have hcB;0i ¼ 0 as
it must be. For J0 ¼ J and I0 ¼ I the localized state exists
due to nonzero h. Figure 1 shows the behavior of MðhÞ.
The latter is the average value of the edge MF operator for
the chain of Josephson junctions as a function of the
strength of the local applied voltage, and for the chain of
cavities in quantum optics as a function of tunneling or
pumping. For the spin chain, MðhÞ describes the local
magnetic moment at the edge of the chain as a function
of the local field. At small h the average value is deter-
mined by the contribution from the extended (band) states,
while at large h it is determined by the localized excitation.
The edge MFs (as well as the localized state) exist even for
J ¼ J0 ¼ 0 for h � 0 (i.e., for Kitaev’s model in the
absence of pairing, � ¼ 0), due to the pairing caused by
h itself. For J ¼ J0 ¼ 0 at small values of h the average
value of the local MF operator shows M� ðh=IÞj lnðh=IÞj
behavior. For smaller values of I0 the region of h appears,
in which the contribution of the localized mode is zero.
Similar features can be also seen in the behavior of the
local susceptibility with respect to h, � ¼ @M=@h. For
instance, temperature dependences of the local suscepti-
bility for several values of the strength of the local applied

TABLE I. Edge Majorana modes (EMM) in quantum chains

Quantum chain Spins-1=2 SC islands Cavity QED

observable spin projection charge light absorption

EMM hSx0i ehn0i hb0 þ by0 i
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potential (magnetic field, tunneling) are shown in Fig. 2. At
h ¼ 0 the local susceptibility diverges (for J ¼ J0 ¼ 0),
while at nonzero h it manifests nonmonotonic temperature
behavior: First it grows with T at low temperatures, gets
the maximum value (which becomes lower with the growth
of h), and then decays with temperature. Such behavior of
the edge MFs can be observed in a spin chain with the help
of, e.g., nuclear magnetic resonance (NMR). In NMR
experiments with spin chains the shift of the resonance
position is proportional to the local susceptibility [16]. We
expect similar results to persist in the case of any spin-1=2
antiferromagnetic chain with the ‘‘easy-plane’’ magnetic
anisotropy (with or without in-plane anisotropy, which is
important for experimental realization in spin chain mate-
rials) with the local magnetic field applied in plane. For
example, spin chain materials with magnetic ions Cu2þ or
V4þ (spin-1=2) often exhibit magnetic anisotropy about
5%–10%, and finite spin chains can be realized via sub-
stitution of nonmagnetic ions instead of magnetic ones
[17]. Single crystals of quasi-1D magnetic materials are
necessary for the realization of the effect because, in
powders, spin chains can be directed randomly. The local
field can be caused by the proximity effect of a ferromag-
net, neighboring to the spin chain, with the value of h
governed by the distance to that ferromagnet. One can
realize in-plane direction of h by rotation of the ferromag-
net. Then the local magnetic susceptibility at the edge of
the spin chain can be measured via the NMR shift. It is
worth noting that the Luttinger liquid approach cannot in
principle describe localized states, which affect the behav-
ior of edge MFs; however, it can describe the low-h

behavior, determined by extended states of the chain. For
the chain of Josephson junctions such a characteristic can
be observed when studying the charge of the edge island as
a function of the voltage, applied locally to the edge of the
chain [14], and temperature, or the tunneling Andreev
conductance. Finally, in quantum optics the edge MFs
can be detected by measuring the state of the probe cavity
(or the edge cavity) as a function of the tunneling ampli-
tude [13]. We expect similar effects for the edge MFs on
the opposite side of the finite chain. For the extended states
of the latter one can replace k ! �q=N þ 2with integer q.
In summary, we have proposed a way of direct observa-

tion of the edge MFs in several realizations in quantum
chains, where excitations can be presented as superposi-
tions of spinless fermions and holes, the necessary
condition for MFs. These three realizations are (1) in
‘‘easy-plane’’ spin-1=2 chains with in-plane polarized
magnetic field, applied to the edge of the chain, (2) in the
chain of Josephson junctions, and (3) in the chain of
cavities in quantum optics with the tunneling of photons
to the edge cavity. As we have shown, such edge MFs can
be observed at nonzero temperatures in experiments on dc
or ac Josephson currents in chains of superconducting
islands, nonlinear quantum optics, and quantum spin chain
materials, as the local characteristic of the edge under the
action of the governing parameter, h, which directly affects
the edge MFs.
Support from the Institute for Chemistry of the V.N.
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FIG. 2 (color online). The susceptibility of the edge MFs � as
the function of the temperature for I ¼ 1, J0 ¼ J ¼ 0, and I0 ¼
1:1. The dotted (blue) line corresponds to the strength of the
applied local voltage (magnetic field, tunneling) h ¼ 0, the solid
(green) line shows h ¼ 0:1, the dash-dotted (red) line describes
h ¼ 0:635 (where the contribution from the localized state
appears; see Fig. 1), and the dashed (black) line shows h ¼ 3:5.

FIG. 1 (color online). The average value of the edge MFs as
the function of the applied local voltage (magnetic field, tunnel-
ing) for I ¼ 1, J0 ¼ J ¼ 0, and I0 ¼ 1:1 at T ¼ 0:7. The dashed
(blue) line shows the contribution from extended states, the
dotted (red) line describes the contribution from the localized
mode, and the solid (black) line is the total value.
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