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We investigate a recent controversy in ultrafast magnetization dynamics by comparing the demagne-

tization rates from two frequently used but competing descriptions for finite temperature magnetism,

namely a rigid band structure Stoner-like approach and a system of localized spins. The calculations on

the localized spin system show a demagnetization rate and time comparable to experimentally obtained

values, whereas the rigid band approach yields negligible demagnetization, even when the microscopic

spin-flip process is assumed to be instantaneous. This shows that rigid band structure calculations will

never be in quantitative agreement with experiments, irrespective of the investigated microscopic

scattering mechanism.
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More than a decade ago, it was shown that a femto-
second (fs) laser pulse can quench the magnetization in the
transition metal ferromagnets on subpicosecond time
scales [1]. Since then, both experimental [2–7] and theo-
retical [8–17] efforts have been made to identify the origin
of this ultrafast demagnetization, but no consensus has
been reached yet. One of the most prominent candidates
to explain ultrafast demagnetization upon fs laser excita-
tion is scattering of various (quasi-)particles, leading to an
ultrafast transfer of angular momentum from and/or to the
spin system [4,5,9,13]. Multiple scattering mechanisms
have been suggested to accommodate this angular momen-
tum transfer, but if and which one dominates the fs mag-
netization dynamics is still being debated. More strongly,
conflicting results on the demagnetization efficiency of a
single scattering mechanism have been obtained using
different descriptions for finite temperature magnetism
[12,15,16]. In this Letter we identify why these large
discrepancies occur, and which approaches are suitable
for describing ultrafast magnetization dynamics. We argue
that such an analysis is of crucial importance for unravel-
ing the governing microscopic mechanism.

To model ultrafast heating of a ferromagnet from first
principles one first needs to be able to fully calculate the
equilibrium properties of a ferromagnet at finite tempera-
tures. Unfortunately, describing finite temperature magne-
tism from first principles is one of the most difficult
problems in solid state physics as of today. In itinerant
ferromagnets both the delocalized wavelike as the localized
particlelike character of the electrons play a crucial role
[18]. An ab initio framework capturing both these aspects
is extremely complicated; hence, using such methods to
calculate ultrafast dynamics seems to be a forbidding
endeavor. Therefore, all calculations performed in the lit-
erature on ultrafast demagnetization resorted to a simplified

representation of the spin system or spin excitations, which
we can generally divide into two types of models.
The first type of models [10–12,17] is based on the

assumption that the magnetic moments are localized in
real space, such as in the Weiss or Heisenberg model
for ferromagnetism. The atomic magnetic moments are
aligned due to the exchange interaction, and thermal fluc-
tuations of the direction of these moments change the
average magnetic moment. Although this approach is
rather phenomenological, it has been highly successful in
describing thermodynamical magnetic properties such as
the Curie temperature TC and the magnetic susceptibility
at large temperatures, which are not easily reproduced by
band structure models.
On the other hand, ultrafast demagnetization rates have

been calculated using a zero temperature band structure
[13,15,16,19], where scattering changes the occupation of
spin up and spin down states. This approach is similar to
the Stoner model, where spin flips of delocalized electrons
quench the atomic magnetic moment instead of change
the local direction of the magnetization. An advantage of
such an approach is that the microscopic properties, such
as scattering rates, can be fully calculated from first
principles.
Recently it has been shown that the two aforementioned

models of a ferromagnet give conflicting results for the
calculated demagnetization rates [12,15,16]. This begs the
question which of the approaches is suitable for quantita-
tive calculations on ultrafast magnetization dynamics. We
will answer this question by performing calculations on
the demagnetization of Ni due to a single microscopic
scattering mechanism. By only changing the Hamiltonian
describing the spin system it is possible to discuss the
driving forces for demagnetization and directly compare
the results for these two approaches.
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For the presented calculations a model is used which
includes all key ingredients to describe ultrafast demagne-
tization, while remaining as simple as possible to easily
compare the two approaches. To this end all calculations
are performed in the random-k approximation and all
matrix elements are assumed to be constant for all elec-
tronic states. The microscopic scattering mechanism inves-
tigated is a phonon assisted Elliott-Yafet spin flip, as this
is the topic of recent controversy [12,15]. We would like
to stress, though, that the final conclusions hold for all
microscopic scattering mechanisms.

As a starting point for the calculations the zero-
temperature density of states (DOS) of Ni is used, which
is depicted in Fig. 1(a). The DOS is filled up to the Fermi
level with noninteracting electrons. The lattice is modeled
by a set of coupled oscillators (phonons) of a single energy
@!p obeying Bose-Einstein statistics, of which the energy

is chosen to be 0.03 eV, i.e., close to the Debye energy of
Ni. Both electron-electron (e–e) and electron-phonon
(e–p) scattering are taken into account by evaluating
Fermi’s Golden rule.

Without spin-orbit coupling both e–e and e–p scattering
are spin-conserving processes; i.e., the total magnetization
remains unchanged. However, due to spin-orbit coupling
the electronic eigenstates are mixtures of the two spin
states. This means that the e–p scattering Hamiltonian
connects the spin-mixed up and down states; hence, an
e–p scattering event can yield a spin-flip transporting
angular momentum from the electrons to the lattice. The
probability asf that an e–p scattering event yields a spin-
flip can be calculated from first principles, which yields
values for Ni of asf ranging from 0.04 to 0.25 [12,15].
For simplicity we here assume a constant asf for all elec-
tronic states.

In the rigid band structure approach, e–p spin flips are
Stoner-like excitations that transport majority electrons
to minority states and vice versa, where the spins of the
majority (minority) electrons are aligned parallel (antipar-
allel) to the net average spin in the magnetic material. By
evaluating Fermi’s golden rule we obtain for example the
following rate for an e–p scattering event, where a phonon
is absorbed and a spin is flipped from up to down,

Tj"i!j#i ¼ asfKepNp

X

k

X

k0
D"ðEÞD#ðEþ EpÞf"ðEÞ

� ½1� f#ðEþ EpÞ�; (1)

where k and k0 label are labels for the electronic states, D",
D#, f", and f# the density of states and occupation of the

majority and minority electrons, respectively. Furthermore,
Kep ¼ 2�Dp�

2
ep=@ in which �ep is the e–p scattering

matrix element for asf ¼ 0 andDp is the amount of phonon

modes per atom that couple to the electrons, which is in
good approximation equal to 1. In all calculations Kep is

taken to be 4:9� 10�3 fs�1 eV�1, corresponding to an
e–p equilibration time of � 1 ps. Similar expressions to
Eq. (1) can be obtained for phonon absorption and/or spin
flips from down to up.
Next, we calculate demagnetization in the localized

atomic spin approach, for which a simple self-consistent
Weiss mean-field model for spin 1=2 is used. This means
that the spin system is described by an external spin bath
which consists of two energy levels separated by the ex-
change interaction Jex ¼ 2kBTCm, where m is the average
normalized magnetization and TC the Curie temperature,
which is set to 620 K for Ni. To flip a spin in this mean
field approach an energy Jex is required, which is the
energy involved for creating a spin excitation, i.e., for
breaking ferromagnetic order. This means that an electron
gains or loses an energy of�Ep � @!magnon in an e–p spin

flip event. Similar expressions as in Eq. (1) can now be
obtained for the Weiss approach. For example, the rate of
creating spin excitations due to majority electrons absorb-
ing phonons is given by

Tj"i!j#i ¼ asf
DS

KepNp

X

k

X

k0
D"ðEÞD"ðEþ Ep � JexÞ

�DS

2
ð1þmÞf"ðEÞ½1� f"ðEþ Ep � JexÞ�: (2)

The factorDSð1þmÞ=2 that appears into the rate equation
corresponds to the atomic spin up density. Note that in this
spin flip event not the atomic magnetic moment is changed,
but the local orientation of the quantization axis, which
involves a different energy scale. Finally, we conjecture
that Eq. (2) correctly describes phonon induced spin flips in
a localized spin system, even though they are not identical
to the single-electron band excitations originally consid-
ered by Elliott and Yafet for nonmagnetic metals.

 Majority
 Minority

FIG. 1 (color online). (a) DOS and equilibrium occupation of
Ni at an ambient temperature of 300 K taken from [15].
(b) Example of redistribution of electrons after a fs laser pulse
of 1.5 eV.
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To simulate the effect of absorption of a 1.5 eV fs laser
pulse, the following three approximations are made: (i) the
dipole matrix elements are identical for all electronic
states, (ii) no spin flips are allowed in the optical excitation
process, and (iii) the laser pulse is infinitesimally short, i.e.,
optical excitation takes place at t ¼ 0. An example of a
typical absorption profile is depicted in Fig. 1(b), where the
change in the amount of electrons per energy �� is given.

Before examining the dynamic properties of the two
models the equilibrium magnetization as a function of tem-
perature is calculated and plotted in Figs. 2(a) and 2(b) for
the Weiss and rigid band approach, respectively. Whereas
the Weiss approach yields the typical curves for Ni, the
magnetization in the rigid band approach is virtually inde-
pendent of the ambient temperature. This is in line with the
fact that the Stonermodel for ferromagnetismpredicts Curie
temperatures for the transition metal ferromagnetism that
are typically five times larger than the experimental obser-
vations; i.e., Stoner excitations do not account for the finite
temperature properties of ferromagnets.

In Figs. 2(c) and 2(d), calculated demagnetization traces
for theWeiss and rigid band structure approach are depicted,
where the magnetization divided by the magnetization

before laser excitation M=M0 is depicted as a function of
time. For the calculations Kee is set to 27 fs�1 and asf to
0.05, comparable to recent ab initio calculations [15]. At
first sight, the traces for the twomodels seemquite similar; a
fast demagnetization is followed by a slower remagnetiza-
tion, which is frequently observed in experiments on Ni.
However, the demagnetization rates in the Weiss model are
almost two orders ofmagnitude larger compared to the rigid
band structure for identical laser fluences and microscopic
parameters. This large difference is further exemplified
by Figs. 2(e) and 2(f), where the maximum quenching
ðM0 �MminÞ=M0 is given for a large range of fluences
and spin flip parameters. For the Weiss model almost com-
plete demagnetization is observed for relatively small val-
ues of asf and P, whereas the rigid band structure model
yields negligible demagnetization rates, even for a spin flip
parameter as large as 0.5 and a fluence that brings the whole
system to a temperature well above TC.
The question now remains why there is such an extreme

difference between the two approaches. It is important to
realize that scattering always tends to equilibrate the vari-
ous subsystems. In the case of the Weiss model scattering
equilibrates the spin temperature to the electron tempera-
ture. Because the electron temperature is increased to
above TC by absorption of the laser pulse, and since the
equilibrium magnetic moment depends strongly on the
temperature in the Weiss model, a large demagnetization
is naturally reproduced. The case of a rigid band structure is
more complicated, since the equilibrium magnetization is
virtually independent of the ambient temperature; see
Fig. 2(b). The origin of demagnetization in this approach
is equilibration of the spin up and spin down occupation
densities for a certain energy level, i.e., f"ðEÞ ¼ f#ðEÞ.
This is illustrated by the data depicted in Fig. 3.
In Fig. 3(a) a typical demagnetization trace is depicted,

calculated in the rigid band structure approach for asf ¼
0:1. Again a rapid demagnetization is followed by a slower
remagnetization, similar to Fig. 2(d). To examine the origin
of this demagnetization in more detail, D"D#ðf" � f#Þ
is plotted as a function of E for various time delays in
Fig. 3(b). From Eq. (1) it can be easily seen that this
occupation difference is directly related to the spin flip
rate. At t ¼ 0 a large positive peak below the Fermi level
indicates that there are more majority than minority elec-
trons, which is caused by the excitation of minority elec-
trons by the laser, in agreement with Fig. 1(b). This means
that spin flips of majority electrons will cause a demagne-
tization at t ¼ 0.
Now due to e–e scattering the peak will quickly shift to

higher energies at larger delays, and eventually changes sign
around 0.9 ps due to cooling of the electron system by the
phonons. This corresponds to a change from demagnetiza-
tion to remagnetization, which is in correspondencewith the
trace in Fig. 3(a). In Fig. 3(c) the maximum quenching
connected to the nonequilibrium electron distribution is
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FIG. 2 (color online). Equilibrium magnetization in the Weiss
(a) and rigid band structure (b) approach for constant electron
and phonon temperatures. Examples of room temperature
demagnetization traces of Ni for the Weiss (c) and rigid band
structure (d) approach. The different lines correspond to
various laser fluences. Maximum quenching as a function of
asf and P for the Weiss (e) and rigid band structure (f) approach,
respectively.
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calculated as a function of delay time, for the hypothetical
case that the spin flip scatteringmechanism is instantaneous
by assuming asf ¼ 1. Using Eq. (1) and some simple
algebra shows that this maximum quenching is given byP

kD"ðf" � fequiÞ.What can be surprisingly concluded from

the data, is that even if e–p spin-flip scattering would be
instantaneous the maximum quenching would never exceed
1.5%of the totalmagnetization, although the rise in electron
temperature is several hundreds of Kelvin. This unambigu-
ously demonstrates that it is not the strength or effectiveness
of the scatteringmechanism that limits the demagnetization
rate, but rather the fact that in a rigid band structure the
magnetic moment is not strongly influenced by the elec-
tronic occupation; i.e., there is simply no driving force for
demagnetization.

To generalize our calculations to an arbitrary band
ferromagnet, the demagnetization efficiency is evaluated

for the following fictitious DOS: D"ð#ÞðEÞ ¼ Ds þ
Dd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½ðE� JexÞ=�Ed�2

p
. This DOS consists of two ex-

change split d bands with a width �Ed and a maximum
DOS Dd. Futhermore, there is an energy independent con-
tributionDs due to s electrons. An example of such a DOS
is given in Fig. 4(a). For all calculations Ds ¼ 0:2 eV�1,
Dd ¼ 0:5 eV�1 and �Ed ¼ 1 eV. In Fig. 4(b) two calcu-
lated demagnetization traces using the rigid band structure
approach are shown for Jex ¼ 0:5 eV and two different
positions of the Fermi level. Surprisingly, depending on
the position of Efermi, the magnetization can both incr-
ease or decrease due to absorption of the laser pulse.

To substantiate this, demagnetization rates at t ¼ 0 are
calculated for various strengths of Jex and positions of
the Fermi level. The results are shown in Fig. 4(c). Two
regions where there is an increase in the demagnetization
can be identified, which is more clearly shown in the phase
diagram in Fig. 4(d). This is in strong contrast with the
Weiss approach, where laser pulse heating always yields a
decrease of the magnetization, irrespective of the position
of the Fermi level.
In conclusion, we have investigated the effect of a fs

laser pulse on the ultrafast magnetization dynamics of Ni
using two different descriptions of the spin system. It is
demonstrated that a rigid band structure approach yields
an almost zero demagnetization, whereas for the same
parameters a significant demagnetization is obtained in
the Weiss model. In that case, using the microscopic
materials parameters from ab initio rigid band structure
calculations reproduces experimentally observed demag-
netization and demagnetization times accurately. Finally,
we conclude that calculations on ultrafast demagnetization
in the rigid band structure approach will never reproduce
the experimentally observed demagnetization, irrespective
of the type or strength of the investigated scattering
mechanism.
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FIG. 3 (color online). Example of an ultrafast demagnetization
trace calculated in the rigid band structure model. The dotted
line indicates the turning point for de- to remagnetization.
(b) Difference of electronic occupation as a function of energy
for various time delays. A positive peak indicates demagnetiza-
tion, whereas a negative one causes remagnetization.
(c) Theoretical maximum quenching if demagnetization was
instantaneous. The dotted line indicates the intersection with
zero, which corresponds to a change from de- to remagnetization.
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FIG. 4 (color online). (a) Model DOS of a ferromagnet with
spin split d bands. (b) Examples of calculated ultrafast magne-
tization dynamics using the DOS in (a) for two different posi-
tions of the Fermi level. (c) Calculated demagnetization rates at
t ¼ 0 for a wide range of positions of the Fermi level and
exchange splittings. (d) Phase diagram showing for which pa-
rameters the magnetization of the ferromagnet is increased or
decreased by a fs laser pulse.
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