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We derive microscopically the dynamics associated with the dc Josephson effect in a superconducting

tunnel junction interacting with an arbitrary electromagnetic environment. To do so, we extend to

superconducting junctions the so-called PðEÞ theory (see, e.g., Ingold and Nazarov, arXiv:cond-mat/

0508728) that accurately describes the interaction of a nonsuperconducting tunnel junction with its

environment. We show the dynamics of this system is described by a small set of coupled correlation

functions that take into account both Cooper pair and quasiparticle tunneling. When the phase fluctuations

are small the problem is fully solved self-consistently, using and providing the exact linear admittance

Yð!Þ of the interacting junction.
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Fifty years ago Josephson stunned the community when
he published [1] the equations that govern the behavior of
superconducting tunnel junctions. These Josephson rela-
tions, as they became known, link the voltage V and the
superconducting phase difference ’ across the junction,
and the current I through it:

I ¼ I0 sin’; V ¼ @

2e

d’

dt
: (1)

If ’ is static, V ¼ 0, and a nondissipative current I flows
through the junction, bounded by jIj � I0. This maximum
supercurrent I0 (or the corresponding Josephson coupling
energy EJ ¼ I0@=2e) was originally predicted to be an in-
trinsic property of the tunnel junction, depending only on its
resistance in the normal state and the superconducting gap of
its electrodes [2], but not on other details such as the junc-
tion’s geometry, or its fabrication process. Along the years,
Josephson junctions (JJs) have proved invaluable electronic
components forming exquisitely sensitive sensors (e.g.,
squid magnetometers, quantum-limited amplifiers), metro-
logical Volt standard devices, or quantum bits and gates.

It is important to note that the first Josephson relation was
derived assuming that the phase ’ has negligible quantum
fluctuations, and it is not obvious why it would be generally
valid beyond this situation. Because the Josephson effect
has, among others, metrological applications, the effect of
phase fluctuations on Josephson tunneling were thoroughly
investigated in the 1980s, mostly using path integral formal-
ism [3–5]. It was concluded that in most practical experi-
mental situations a JJ can indeed be described using the
effective Josephson Hamiltonian HJ ¼ �EJ cos’ that
directly corresponds to the first Josephson relation, with,
however, small corrections due to phase fluctuations that
originate in its electromagnetic environment (i.e., the circuit
connected to the junction). This was checked for instance in
the so-called Macroscopic Quantum Tunneling experiments
[4–6]. More recently, JJ-based quantum logic circuits were

also shown to be accurately described using the effective
Josephson Hamiltonian [7], with their electromagnetic envi-
ronment partly responsible for their decoherence [8]. Note,
however, that some environmental decoherence mecha-
nisms in JJ qubits were recently identified that cannot be
captured within only the effective Josephson Hamiltonian
model [9–11].
On the other hand, the environment of a JJ can have a

more dramatic effect: the phase fluctuations generated by
an impedance larger than the resistance quantum RQ ¼
h=4e2 � 6:5 k� are expected to suppress the supercon-
ducting character of a JJ [4], and some experiments have
confirmed this prediction [12]. Presently several groups are
actively developing nondissipative high impedance envi-
ronments using 1D arrays of JJs in the search for coherent
quantum phase slips [13,14], or to achieve engineering of
quantum phase fluctuations [15,16]. Given the goal, it is
questionable whether using the effective Josephson
Hamiltonian is still fully relevant to model these arrays.
Moreover, such JJ arrays implement impedances having
several plasma mode resonances that are not readily
handled by the available theory.
In this Letter we provide a general derivation of the

Josephson coupling in the presence of phase fluctuations
generated by an arbitrary electromagnetic environment.
Our derivation starts from a microscopic description of
the tunneling of individual electrons between the super-
conducting electrodes, and applies the machinery of the
so-called PðEÞ theory (PoET) [17–19]. This theory was
developed in the 1990s to explain a reduction of differen-
tial conductance at low voltage (also called ‘‘zero-bias
anomaly’’) in nonsuperconducting sub-�m tunnel junc-
tions, a phenomenon that is now often referred to as
dynamical Coulomb blockade. In its original form this
theory evaluates the incoherent tunneling rate of electrons
properly taking into account the probability PðEÞ that the
environment absorbs an energy E during a tunnel event.
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While perturbative in tunneling, this theory is nonpertur-
bative in the strength of coupling to the environment and it
can deal with an arbitrary frequency-dependent linear
electromagnetic environment. Note that it also applies to
incoherent Cooper pair tunneling in JJs at finite sub-gap
voltages. Its predictions were shown to be quantitative in a
number of experiments, in particular when the environ-
ment consists of resonators [20,21]. Here, by generalizing
PoET to the dc Josephson effect, a coherent flow of Cooper
pairs through the junction, we obtain a unified nonpertur-
bative treatment of arbitrary environmental effects in both
normal and superconducting tunnel junctions. In this
approach we show that one is lead naturally to introduce
a self-consistent mean-field electrodynamic response of
the junction, something that, as far as we know, has not
been done explicitly previously for JJs. In this formulation
the junction is systematically and properly combined with
the rest of the circuit, resulting in an intuitive picture of the
system. In the case when the phase fluctuations are small
we work out the linear response of the junction and a
simple iterative scheme to evaluate a renormalized I0 and
its admittance. As an illustrative example, we work out the
self-consistency for a JJ in an Ohmic environment at zero
temperature. In the conclusion we discuss the scope of our
results and possible extensions.

The circuit we consider, shown in Fig. 1(a), consists of a
pure tunnel element connected in parallel with the junc-
tion’s geometric capacitor and in series with an arbitrary
linear electromagnetic environment with impedance Zð!Þ.
The Hamiltonian of the circuit is

H ¼ HL þHR þHenv þHT;

where Henv describes the voltage source and Zð!Þ in the
manner of Caldeira and Legget [5] and HL;R are the BCS

Hamiltonians of the junction’s electrodes. For the left
electrode, for instance, we have

HL ¼ X
‘�

�‘c
þ
‘�c‘� ��

X
‘

cþ‘"c
þ
�‘# þ c �‘#c‘";

where � is the spin index, ‘ is a composite channel and
momentum index for the electrons in the leads, and the
overbar denotes the opposite-momentum state (HR has the
same form, with states indexed by r instead of ‘). Finally,

HT ¼ T̂ þ T̂y is the tunneling Hamiltonian treated as a

perturbation, where the operator T̂ ¼ ei�̂
P

‘;r;�t‘rc
þ
r�c‘�

transfers an electron from the left to the right electrode.
We work in a gauge where the electrodes have real BCS
order parameters � (assumed identical in L and R) and,

consistently, the ei�̂ term here takes care of transferring the
electronic charge e between the electrodes [10,19]. We

restrict to zero dc voltage across the junction so that �̂ðtÞ ¼
’=2þ ~�ðtÞ with ’ being the superconducting phase dif-

ference across the junction and ~�ðtÞ a zero-mean fluctuat-
ing phase operator driven by Zð!Þ. By introducing the
standard Bogoliubons operators

�1k ¼ ukck" þ vkc
þ
�k#; �0k ¼ �vkck" þ ukc

þ
�k#

(k ¼ ‘, r) with the usual BCS coherence factors uk, vk we
can diagonalize HL;R, whereas HT becomes

HT ¼ X
‘;r

t‘r½�þ
0r�1‘ð�ei�̂u‘vr � e�i�̂urv‘Þ

þ �þ
1r�0‘ð�e�i�̂u‘vr � ei�̂urv‘Þ

þ �þ
1r�1‘ðei�̂uru‘ � e�i�̂vrv‘Þ

þ �þ
0r�0‘ð�e�i�̂uru‘ þ ei�̂vrv‘Þ� þ ð‘⇋rÞy:

In thermal equilibrium situations the supercurrent through
the junction is given by the thermodynamic relation

I ¼ 2e

@

dF

d’
; (2)

where F is the free energy. To lowest order in perturbation
theory the change of F due to HT can be cast as

�F ¼ 1

@

Z þ1

0
dt ImSHT

ðtÞ; (3)

with SHT
ðtÞ ¼ hHTðtÞHTð0Þi where the angular brackets

denote averaging over the unperturbed quasiparticle and
environment states that act as bath degrees of freedom
whose time evolution is the unperturbed one. A straightfor-
ward algebraic calculation gives

SHT
ðtÞ ¼ X

‘;r;�¼�
jt‘rj2½urvru‘v‘ðA�ðtÞ � B�ðtÞÞC��ðtÞei�’

þ ððu2‘v2
r þ u2rv

2
‘ÞA�ðtÞ

þ ðu2‘u2r þ v2
‘v

2
rÞB�ðtÞÞC���ðtÞ� (4)

with

(a) (b) (c)

FIG. 1. (a) We consider a Josephson junction characterized by
its normal state resistance RT and derive its effective critical
current Ieff0 taking into account both a static (’) and a fluctuating
phase difference ~�ðtÞ driven by the electromagnetic environ-
ment. (b) As seen from an individual tunnel channel, the environ-
ment consists of the impedance Zð!Þ of the connecting circuit,
of the junction’s own capacitance C, and of the electromagnetic
response due to tunneling in the other channels, here described
by a linear admittance Yð!Þ, but which in the general case is a
nonlinear element. (c) We solve the problem in the case of an
Ohmic environment, retaining only the dominant inductive
contribution in Y.
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A�¼�ðtÞ ¼ h��
0‘ðtÞ���

0‘ �
��
1r ðtÞ��

1r þ �
��
1‘ ðtÞ��

1‘�
�
0rðtÞ���

0r i
B�ðtÞ ¼ h��

0‘ðtÞ���
0‘ �

��
0r ðtÞ��

0r þ �
��
1‘ ðtÞ��

1‘�
�
1rðtÞ���

1r i
C��0 ðtÞ ¼ hei� ~�ðtÞei�0 ~�ð0Þi;
where a fermion operator with a minus exponent means an
annihilation operator. The e�i’ terms in Eq. (4) are each
related to the transfer of two spin-conjugate electrons in a
given direction, i.e., a whole Cooper pair with charge 2e,
they thus correspond to the Josephson effect. Note also that
they come with the urvr and u‘v‘ factors that correspond
to the anomalous Green’s function of the electrodes, carry-
ing the essence of superconductivity. The ’-independent
terms, on the contrary, are related to a back-and-forth
transfer of an electron and correspond to ordinary quasi-
particle tunneling, the only processes remaining in the
normal state. These processes do not transfer a net charge
through the junction but they still couple to the phase
fluctuations and contribute to the dynamics of the JJ.
While these processes are obviously disregarded when
JJs are modeled using only the effective Josephson
Hamiltonian (e.g., most JJ-based qubit literature), the full
Ambegaokar-Eckern-Schön effective action for the JJ [3]
[whose form is closely related to Eq. (4)] allows account-
ing for them in path integral formalism. In the present
approach we handle these terms using only two-point
real-time correlators and sparing the use of path integrals.
The correlators Cþ�ðtÞ, C�þðtÞ that accompany quasipar-
ticle tunneling are those encountered in the standard PoET

[specifically, hei ~�ðtÞe�i ~�ð0Þi ¼ R
dte�iEt=@PðEÞ is the in-

verse Fourier transform of PðEÞ], while the Cooper pair
tunneling comes with distinct correlators CþþðtÞ, C��ðtÞ.
For simplicity we here assume phase fluctuations are sym-
metric; i.e., Cþþ ¼ C�� and Cþ� ¼ C�þ (we discuss the
limit of validity of this assumption in the Supplemental
Material [22]). Going to a continuum of states in the
electrodes, from Eq. (4) we obtain the exact result at lowest
order in tunneling

SHT
ðtÞ ¼ 2RQ

�2RT

½ðpðtÞ2 � qðtÞ2ÞCþ�ðtÞ

þmðtÞ2CþþðtÞ cos’�; (5)

where RT is the normal state tunnel resistance of the
junction and mðtÞ, pðtÞ, qðtÞ are, respectively, the inverse
Fourier transforms of Mð"Þ ¼ ��fð�"Þ�ð"Þ=", P ð"Þ ¼
fð�"Þ�ð"Þ, Qð"Þ ¼ �fð�"Þ	ð"2 � �2Þsgnð"Þ with

�ð"Þ ¼ j"jReð"2 ��2Þ�1=2 the BCS density of states, 	
the Heavyside step, and fð"Þ the occupation probability of
the Bogoliubov quasiparticles, which need not be thermal.
Here both electrodes are assumed identical but the general
case could also be handled. Note that in principle the gap�
of the electrodes should be self-consistently evaluated from
fð"Þ, an effect which becomes important at temperatures
comparable to the critical temperature or in strong non-
equilibrium. If we first ignore a possible ’ dependence of

Cþ�, then, by combining Eqs. (2), (3), and (5) one obtains
a generalization of the first Josephson relation with an
effective critical current

Ieff0 ¼ 2

�e@RT

��������
Z þ1

0
dt Im½mðtÞ2CþþðtÞ�

��������; (6)

which remains valid beyond thermal equilibrium. This
expression generalizes PoET in real-time formulation
[23,24]. In the case where phase fluctuations are negligible
CþþðtÞ � 1, and one recovers all standard results on JJ,
such as, e.g., the temperature dependence of the critical
current [2]. Hence Cþþ is a kernel giving a renormaliza-
tion of the critical current with respect to the standard
Ambegaokar-Baratoff value [2]. We will see below that
Cþ� should in principle depend on ’ (albeit weakly in
usual cases), thus yielding additional terms that cause a
departure from the purely sinusoidal current-phase relation
predicted by Josephson.
We now consider finite phase fluctuations and first

assume that the degrees of freedom generating these fluc-
tuations can be regarded as a linear impedance Zeff as in the
usual PoET [19]. Such fluctuations are then Gaussian and
consequently Cþ� can be expressed in terms of only the

two-point correlator S�ðtÞ ¼ h~�ðtÞ~�ð0Þi. As a consequence
of the fluctuation-dissipation theorem, S�ðtÞ can in turn be
evaluated from the spectral density of the environment.
Namely

Cþ� ¼ eS�ðtÞ�S�ð0Þ ¼ eJðtÞ

Cþþ ¼ e�S�ðtÞ�S�ð0Þ ¼ e�JðtÞ�2S�ð0Þ
(7)

S�ðtÞ ¼
Z þ1

�1
d!

!

ReZeffð!Þ
2RQ

e�i!t

1� e�
@!
: (8)

Here we have also introduced the usual PoET notation
JðtÞ ¼ S�ðtÞ � S�ð0Þ [19]. Replacing Cþþ in Eq. (6) we

can pull out of the integral the renormalization factor � ¼
e�2S�ð0Þ, which plays a major role in the following.
Note that, unless ReZeffð!� 0Þ ¼ Oð!2Þ or smaller,

S�ð0Þ ¼ 1 (signaling thermal or quantum phase diffu-
sion), yielding � ¼ 0 and thus Ieff0 ¼ 0. This might seem

surprising since in most cases when one measures a JJ, it is
connected to a circuit that contains normal metal at room
temperature (with finite dc resistance), but its critical cur-
rent is nevertheless measured finite. The apparent paradox
is resolved when one considers the JJ as being part of its
own electromagnetic environment [see Fig. 1(b)]: a super-
conducting JJ perfectly shunts the rest of the circuit at zero
frequency, preventing phase diffusion and the divergence
of S�ð0Þ. More importantly, doing so is actually the only
way to enforce an amplitude and a dynamics of the phase
fluctuations in the system that are actually consistent with
the presence of the junction, unlike in standard PoET [25].
This inclusion of the junction in its own environment can
also be justified microscopically: a typical metallic tunnel
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junction contains a very large number N of independent
Landauer channels that only interact through their common
phase. Thus, as seen from each individual channel, the
other channels form a (a priori nonlinear) bath whose
response is that of the full junction (up to corrections of
order 1=N) and which we treat like the rest of the environ-
ment. Let us stress also that in typical tunnel junctions even
if the junction’s conductance is large, its individual chan-
nels remain very weakly transmissive. Hence, lowest order
perturbation in tunneling is sufficient and all the compli-
cations in the behavior of the JJ arise solely from the
electromagnetic interaction among the channels and with
the environment, which are treated here in a self-consistent
mean-field manner. Such a self-consistent mean-field
approach of PoET has been successfully checked experi-
mentally in low-resistance normal-state junctions [26],
and, in that case, when the junction is described as a linear
element (see below), this was shown to correspond to a
self-consistent harmonic approximation that minimizes the
free energy in the path integral description of the system
[27]. Let us finally remark that in this mean-field approach
the superconducting character of the JJ gives rise to a
chicken-and-egg situation that requires a self-consistent
solution, much like for the value of � in BCS theory itself.

We now close the loop by working out the self-
consistency in the linear regime assumed in this part.
Within this hypothesis, the response of the junction can
be obtained from a generalized fluctuation-dissipation rela-
tion [28] and is expressed as an admittance

Yð!Þ ¼ cos’

iLeff
J !

þ 2
Z 1

0
dt i ImSIðtÞ e

i!t � 1

@!
(9)

that is exact at lowest order in perturbation [22]. In this
expression Leff

J ¼ ðð2e=@ÞIeff0 Þ�1 is the effective Josephson

inductance and SIðtÞ ¼ hÎðtÞÎð0Þi is the correlator of the

current operator Î ¼ ð2e=@Þð@HT=@’Þ through the junc-
tion. This latter definition implies that SIðt; ’Þ ¼
ðe=@Þ2SHT

ðt; ’þ �Þ, readily obtained from Eq. (5). In

the self-consistent approach we discuss here we shall
then replace

Zeffð!Þ ¼ ½Yð!Þ þ iC!þ Z�1ð!Þ��1 (10)

in Eq. (8), where C is the junction capacitance and Z the
impedance of the external circuit as seen from the junction
[see Fig. 1(b)]. Thus we are able to obtain the full dynamics
of the system (and Ieff0 as a by-product) by solving the

self-consistency defined by Eqs. (5), (9), (10), (8), and (7).
This can, for instance, be done by iterating from an
initial guess such as Yð!Þ ¼ cos’=iL0

J!, L0
J being the

Josephson inductance in the absence of environment. In
order to be valid the iterated solution must be consistent
with the assumption of linear behavior of the effective
environment, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffi
S�ð0Þ

q
� 2�; (11)

so that phase fluctuations do not feel the nonlinearity of the
JJ. In practice this means Ieff0 should not be reduced more

than a few percent with respect to I0 for this linear
approach to be valid. If this later criterion if fulfilled,
then the solution obtained is essentially the exact dynamics
of the junction at lowest order in tunneling.
Simplifying approximations can be made or not depend-

ing on the value of the ‘‘plasma frequency’’ !p ¼
ðcos’=Leff

J CÞ1=2 defined as the resonance frequency of
the purely inductive first term of Eq. (9) with the junction’s
capacitance C. If !p is significantly smaller than !Gap ¼
2�=@, then at low temperature it is a good approximation
to keep in Yð!Þ only the inductive term, that precisely
suppresses the divergence of S�ð0Þ. This is justified
because the integral in Eq. (9) has only a slight capacitive
contribution at frequencies ! & !Gap ¼ 2�=@ with dissi-

pation setting in only at frequencies close to or above!Gap.

With this simplification Zeff reduces to the impedance of an
LC oscillator resonating at !p damped by the external

impedance Zð!Þ. Furthermore, still in the case when!p <

!Gap, the characteristic time scale of phase fluctuations

(!�1
p ) is significantly longer than that of m2ðtÞ, which is

!�1
Gap. Then, in Eqs. (6) and (7) we can take the short-time

limit Jðt ! 0Þ ¼ 0, yielding the simple renormalization
Ieff0 ¼ �I0. A similar renormalization of the Josephson

coupling was obtained at ’ ¼ 0 in Refs. [4,29]. We see
here that this is valid only when !Gap is the fastest dynam-

ics in the problem and that the opposite situation cannot be
treated correctly in approaches starting from the effective
Josephson Hamiltonian.
Let us now fully work out an example in the above

simplifying assumption!p < !Gap, I
eff
0 ¼ �I0, and further

restricting to the ‘‘Ohmic’’ case where Zð!Þ¼R [Fig. 1(c)]
and zero temperature. Then the effective environment
reduces to an RLC circuit with impedance Zeffð!Þ ¼
ð� cos’=i!L0

J þ iC!þ RÞ�1 for which S�ð0Þ can be
calculated analytically and from which we derive the
self-consistency equation

� ¼ exp� R

2RQ

tanh�1

�
1�2�q2 cos’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�q2 cos’

p
�
þ i �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�q2 cos’
p ; (12)

where q ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
C=L0

J

q
would be the quality factor of the

plasma oscillation at’ ¼ 0, in absence of renormalization.
Again, valid solutions must satisfy Eq. (11), that is, 1�
� � 1. However, this always fails at ’ ¼ ð�=2Þmod�
where !p vanishes and where a treatment beyond linear

response is needed. When the approximation is valid
(away from the pathological points) we predict that the
renormalization of I0 is different at ’ ¼ 0 and ’ ¼ �,
leading to a slightly anharmonic current-phase relation.
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This anharmonicity is a generic feature in the self-
consistent approach because it causes Cþ�ðtÞ in Eq. (5)
to have a ’ dependence through the dynamical response
of the JJ.

In conclusion, we have extended the framework of the
PoET to address the effect of an arbitrary electromagnetic
environment on the Josephson effect in metallic tunnel
junctions. Doing so, we reached a self-consistent descrip-
tion of the Josephon effect, shedding new light on the
interaction of a JJ with its environment, including its
dynamics. This notably predicts that the celebrated first
Josephson relation generically departs from a sinusoid
when the impedance of its environment is increased, a
fact that should be verifiable experimentally. For strictly
dc Josephson effect and small phase fluctuations, the self-
consistency is fully worked out using the exact linear
admittance of the interacting JJ, a quantity that is acces-
sible to measurements and that should be useful for quan-
tum circuit engineering. We think more work in this
direction could extend this approach to non-dc situations
and non-Gaussian phase fluctuations [22]. This would
provide the general ‘‘circuit laws’’ for Josephson junctions,
a quantum nonlinear generalization of the classical
‘‘impedance combination laws.’’
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