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A mesoscopic hybrid normal-metal–superconductor ring is characterized by a dense Andreev spectrum

with a flux dependent minigap. To probe the dynamics of such a ring, we measure its linear response to a

high frequency flux, in a wide frequency range, with a multimode superconducting resonator. We find that

the current response contains, besides the well-known dissipationless Josephson contribution, a large

dissipative component. At high frequency compared to the minigap and low temperature, we find that the

dissipation is due to transitions across the minigap. In contrast, at lower frequency there is a range of

temperature for which dissipation is caused predominantly by the relaxation of the Andreev states’

population. This dissipative response, related via the fluctuation dissipation theorem to a nonintuitive zero

frequency thermal noise of supercurrent, is characterized by a phase dependence dominated by its second

harmonic, as predicted long ago but never observed thus far.

DOI: 10.1103/PhysRevLett.110.217001 PACS numbers: 74.45.+c, 74.40.Gh

Connecting a phase coherent nonsuperconducting con-
ductor (N) to two superconductors (a S-N-S junction) gives
rise to the formation of Andreev states (AS) which are
coherent superpositions of electron and hole states con-
fined in the N metal and carry the Josephson supercurrent
[1]. They strongly depend on the phase difference ’
between the two superconductors. The quasicontinuous
Andreev spectrum of a diffusive metallic wire exhibits a
phase modulated induced gap, the minigap, which closes at
odd multiples of � [2–4]. Theoretically, it was predicted
that, in contrast to tunnel Josephson junctions [5] and
because of the smallness of this induced gap, S-N-S junc-
tions should exhibit low frequency and low temperature
supercurrent fluctuations at equilibrium [6]. According to
the fluctuation dissipation theorem, such equilibrium fluc-
tuations led to a dissipative current under an oscillating
flux excitation [7,8] and was predicted long ago to be
characterized by a phase dependence dominated by its
second harmonic [9], � periodic, but not yet observed. In
this Letter, we present one of the most conceptually simple
and direct evidences of these supercurrent fluctuations: the
investigation of the linear current response of a phase
biased N-S ring over a wide frequency range. We identify
two fundamental dissipation mechanisms, the microwave-
induced transitions across the minigap and the energy
relaxation of Andreev level populations. We focus on this
second contribution which is found to be nearly� periodic.
The extra cusps we find at odd multiples of � reflect the
closing of the minigap. This characteristic phase depen-
dence, which is precisely that of the low frequency thermal
supercurrent noise, as well as the frequency dependence
are in complete agreement with theoretical predictions
[6,8,9]. These experiments could be generalized to any
S-N-S junction or S constriction if they contain at least
one well transmitted conduction channel, so that the

Andreev levels are close enough at �. This shows that
linear ac measurements, close to equilibrium, reveal physi-
cal properties that are not accessible by standard transport
measurements dominated by nonlinear effects such as
switching current and ac Josephson effect [10,11].
To probe the AS close to equilibrium, the control of

the phase difference across the junction is essential and can
be done in a N-S ring threaded by an Aharonov-Bohm flux.
dc experiments in this configuration include the tunnel spec-
troscopy of theminigap [12] and themeasurement of the flux
dependent Josephson supercurrent using superconduting
quantum interference device [13] or Hall probe magneto-
metry [14]. Beyond the equilibrium AS spectrum in a static
magnetic flux, we investigate its dynamics [15], using a
technique pioneered for mesoscopic normal rings [16]. We
couple a N-S ring to a superconducting microresonator and
phase bias it with a dc Aharonov-Bohm flux and a small
oscillating flux ��! at the resonator’s eigenfrequencies !.
The linear current response �I! is characterized by the
complex susceptibility �ð!Þ ¼ �I!=��! ¼ �0ð!Þ þ
i�00ð!Þ ¼ i!Yð!Þ, whereYð!Þ is theN-S ring’s admittance.
This susceptibility is extracted from the variations of the
resonator’s eigenmodes (frequency and quality factor). The
ring’s dissipationless response is deduced from the periodic
flux variations of �0, whereas the dissipation corresponds to
�00. A first experiment [15] found a large dissipative response
as well as a nondissipative one that differed notably from the
adiabatic susceptibility, the simple flux derivative of the
ring’s Josephson current (the inverse kinetic inductance).
These results were partially explained by the theory of the
proximity effect [8]. However, the shape of the flux depen-
dences of � did not vary with frequency (in the range
explored), so that the different components of the ring’s
dynamical response could not be accessed. In particular,
with the inelastic scattering ratemuch smaller than the lowest
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eigenfrequency, the dissipative response associated with the
relaxation of Andreev states could not be detected. In the
present experiment, we report on a N-S ring with an
enhanced temperature dependent inelastic scattering rate
1=�inðTÞ, thanks to a thin Pd layer at the N-S interface,
between the normal gold mesoscopic wire and the super-
conducting niobium loop. The higher inelastic scattering
rate, combined with a broader frequency and temperature
range, leads to the identification of the two fundamental
contributions to the supercurrent relaxation. At frequencies
above the inelastic scattering rate, dissipation is due to
microwave-induced excitations across the minigap. In the
opposite regime of lower frequency, which could not be
reached previously, dissipation is due to the thermal relaxa-
tion of Andreev level populations.

The experimental setup is shown in Fig. 1(a): the reso-
nator consists of a double meander line etched out of a
1 �m thick niobium film sputtered onto a sapphire sub-
strate. The N-S ring connects the two lines at one end of the
resonator, turning it into a �=4 line with a fundamental
frequency of 190 MHz, and harmonics 380 MHz apart.
A weak capacitive coupling to the microwave generator

preserves the high quality factor of the resonances, which
can reach 5� 104 up to 10 GHz. The N-S ring is fabricated
by electron beam lithography. The Au wire (4 �m long,
0:3 �mwide, and 50 nm thick) is first deposited by e-beam
deposition of high purity gold. The S part is deposited in a
second alignment step by sputtering of a Pd/Nb bilayer
(6 nm Pd, 100 nm Nb). The resulting uncovered length of
the Au wire is L ¼ 1 �m, corresponding to the long
junction limit L � �S, the superconducting coherence
length. The N-S ring is connected to the Nb resonator in
a subsequent step, using ion-beam assisted deposition of a
tungsten wire in a focused ion beam (FIB) microscope.
This process creates a good superconducting contact
between the resonator and the Pd=Nb part of the ring.
The 6 nm thick Pd buffer layer ensures a good transparency
at the N-S interface, as demonstrated by the amplitude of
the critical current measured with dc transport measure-
ments on control S-N-S junctions fabricated simulta-
neously [Fig. 1(c)]. It also enhances the inelastic
scattering rate because of Pd’s spin wave–like excitations
(paramagnons) [17–19]. Considering that the phase coher-
ence time extracted from weak localization measurements
on a 6 nm thick Pd thin film [17] was of the order of
0:3� 0:1 ns at 1 K, which is longer than the estimated
diffusion time �D ¼ 0:1 ns through the Au wire between
the S contacts, we do not expect a reduction of the critical
current as confirmed by measurements in the control
samples.
The quantities we measure are the variations with dc flux

of the resonator’s quality factor and eigenfrequencies
�Qð�Þ and �fð�Þ. They are simply related to the oscillat-
ing phase dependent part of the complex susceptibility,
characterized by �0ð’Þ and �00ð’Þ, where the supercon-
ducting phase ’ is related to the flux threading the ring by
’ ¼ �2��=�0, where �0 ¼ h=2e is the superconduct-
ing flux quantum. The relation reads [15]

�fnð�Þ
fn

¼ � 1

2

L2
C

L
�0ð’; fnÞ;

�
1

Qn

ð�Þ ¼ L2
C

L
�00ð’; fnÞ:

(1)

The coupling inductance LC ¼ 9� 2 pH is due to the S
part of the N-S ring, and L ¼ 0:3 �H is the resonator’s
geometrical inductance. These expressions are valid at
temperatures such that the kinetic inductance of the
S-N-S junction is larger than the ring’s geometrical induc-
tance (outside this range screening of the applied flux, both
dc and ac, needs to be considered [15]). This sets the lower
limit to the temperature, so that experiments were con-
ducted between 0.4 and 1.5 K. The frequencies probed
ranged between 190 MHz and 3 GHz.
We find drastic variations of both the amplitude and the

shape of �0 and �00 as frequency and temperature are
changed. At the lowest frequencies and highest temperatures
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FIG. 1 (color online). (a) Inset: Scanning electron micrograph
of the N-S ring fabricated to explore the dynamics of Andreev
states. (Main panel) N-S ring is connected to a Nb multimode
resonator (meander in the top) by W wires deposited by a FIB.
(b) Flux dependence of �0 at several resonator eigenfrequencies
(f0 ¼ 190 MHz, f1 ¼ 560 MHz, f5 ¼ 2 GHz) and T ¼ 1:2 K.
At f0, �

0 is barely distinguishable from a cosine (solid line).
Whereas the amplitude ��0

��0 ¼ �0ð�Þ � �0ð0Þ is frequency

independent, its temperature dependence is that of the switching
current Is. Note the appearance of a local maximum around ’ ¼
0 at high frequency. (c) Temperature dependence of the switch-
ing current of the control sample Is (circles) and of ð�0=2�Þ�
ðL=L2

CÞ��0
��0 measured in the N-S ring (squares) with their fits

according to Ref. [11] (respectively, dashed and solid lines). Best
fit yields ETh � 71� 5 mK, corresponding to 1.5 GHz for the
N-S ring.
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investigated [see Figs. 1 and 2(a)], the dissipationless �0ð’Þ
is well described by a pure 2�-periodic cosine, as expected
for the adiabatic susceptibility �J ¼ @IJ=@� of the
Josephson current which is purely sinusoidal at these mod-
erately high temperatures, much larger than ETh [2,14]. As
shown in Figs. 1(b) and 1(c), the amplitude ��0

��0 ¼
�0ð�Þ � �0ð0Þ perfectly reflects the expected, roughly expo-
nential, decay of the Josephson critical current IJðTÞ ¼
IJð0Þ expð�kBT=3:6EThÞ [11], that was also measured in
the control wire, with ETh the Thouless energy @=�D and
�D the diffusion time across the N wire.

We find for both samples ETh ¼ 71� 5 mK, which
corresponds to �D ’ 0:1 ns and Egð0Þ ’ 3ETh ¼ 210 mK

for the maximum amplitude of the minigap at � ¼ 0. In
contrast, the dissipation, characterized by �00ð’Þ, is nearly
� periodic [see Fig. 2(b)] at the highest temperatures
investigated and acquires a strong 2�-periodic component
at lower temperature. When increasing the frequency
[Figs. 1(b), 2(a), and 2(c)], �0ð’Þ contains additional har-
monics, with peaks at odd multiples of � and moreover a
local maximum at ’ ¼ 0, mod ½2�� for the highest tem-
peratures. On the other hand, at 2 GHz [Figs. 2(c) and 2(d)]
and low temperature, �0ð’Þ and �00ð’Þ have identical
shapes, with peaks at �, mod [2�], reflecting the under-
lying minigap that varies like 2Egð0Þj cosð’=2Þj.

In the following we exploit this complex evolution of
�ð’Þ with frequency and temperature to extract the differ-
ent mechanisms at work in the dynamics of AS. To this

end, we make use of theoretical predictions [8] based on
Usadel equations and recent numerical simulations [20]
inspired by the analysis of the ac response of normal
mesocopic rings [21–23]. The response function of a N-S
ring has been shown to contain three contributions: � ¼
�J þ �D þ �ND. The adiabatic, zero frequency, Josephson
contribution �J is purely real and is the derivative of the
Josephson current @IJ=@�. The second contribution, the
diagonal susceptibility �D, is the first nonadiabatic, fre-
quency dependent contribution. It describes the Debye-like
relaxation of the (phase dependent) thermal populations
fnð’Þ of the Andreev states, with a typical inelastic relaxa-
tion time �in according to the simple model proposed
for the dynamics of persistent currents in normal rings
[21–23]:

�D ¼ X
n

in
@fn
@�

i!

1=�in � i!
¼ �X

n

i2n
@fn
@	n

i!

1=�in � i!
;

(2)

where the square of in ¼ �@	n=@�, the current carried by
the nth Andreev level of energy 	nð�Þ, appears. Finally,
the nondiagonal contribution �ND describes quasiresonant
microwave-induced transitions between two Andreev lev-
els, involving (in contrast with �D) nondiagonal matrix
elements of the current operator [20,24]. The contribution
�00
ND to the phase dependent susceptibility dominates when

! � 1=�D � 1=�in, as in Fig. 2(d). �0 and �00 then have
similar shapes which follow approximately the opposite of
the minigap with peaks at � and a �j cosð’=2Þj depen-
dence [20]. This high frequency regime was the only one
accessed in the previous experiments on Au wires directly
connected to W superconducting wires. In those experi-
ments the energy relaxation time, limited by electron-
electron interactions, of the order of 0:1 �s, was very
long due to the superconducing contacts [15,25].
Therefore, those measurements were always in the regime
!�in � 1, where �00

D is negligible [Eq. (2)]. In contrast, the
Pd layer beneath the Nb contacts in the present samples
considerably reduces the inelastic scattering time, leading
to a substantial contribution of �00

D for the resonator’s first
five eigenfrequencies. We now focus on this contribution
analyzed in Figs. 3 and 4.
We first present the predicted flux dependence of �D,

given by the function F,

Fð�; TÞ ¼ X
n

in
@fn
@�

¼ �X
n

i2n
@fn
@	n

; (3)

which reads in the continuous spectrum limit Fð�; TÞ ¼R
d	J2Sð�; 	Þ=½4kBT
ð	Þcosh2ð	=2kBTÞ�. Here, JS and 


are, respectively, the spectral current and the density of
states of the S-N-S junction. This function was introduced
by Lempitsky [9] to describe the IðVÞ characteristics of
S-N-S junctions and was calculated numerically using
Usadel equations by Virtanen et al. [8]. At large tempera-
ture compared to ETh, Fð�; TÞ can be approximated by the
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FIG. 2 (color online). Evolution of �0 [top, (a) and (c)] and �00
[bottom, (b) and (d)] phase dependence with temperature at f1 ¼
560 MHz<ETh=h (left) and f5 ¼ 2 GHz * ETh=h (right).
�0ð’ ¼ �Þ and�00ð’ ¼ �Þ increasewith decreasing temperature.
�0ð’Þ and �00ð’Þ strongly differ at low frequency and high
temperature, whereas they are similar with a shape reminiscent
of the minigap at high frequency. The solid line in (d) is propor-
tional to opposite of the minigap dependence j cosð’=2Þj. Curves
have been shifted so that �0ð’ ¼ �Þ � �0ð’ ¼ 0Þ ¼ 0 and
�00ð’ ¼ 0Þ ¼ 0.
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following analytical form: FUð’; TÞ / ðf��þ ð�þ ’Þ�
½2��gÞ sinð’Þ � j sinð’Þjsin2ð’=2Þ=�. It is dominated by
its second harmonics with in addition a sharp linear singu-
larity at odd multiples of � (see Fig. 4). This is due to the
dominant contribution of Andreev levels close to the mini-
gap whose flux dependence is singular like in a highly

transmitting superconducting single channel point contact
[6]. We now show that the particular flux dependence of the
function FU can explain the experimental data of Figs. 1
and 2. We first follow the frequency dependence of the
amplitude of �0

Dð’Þ ¼ �0ð’Þ � �Jð’Þ at fixed temperature
and check that the shape of �0

Dð’Þ does not change with
frequency and is the same as that of �00

D, as predicted for the
temperature and frequency regime where the contribution
of �00

ND can be neglected. As shown on Fig. 3(b), it is then
possible to fit the frequency dependence of the amplitude
of �0

Dð’Þ by the expected ð!�inÞ2=½1þ ð!�inÞ2� and deter-
mine the characteristic time �in for several temperatures
according to Eq. (2). We find values of �in varying between
1 and 0.2 ns. This last value measured at 1 K is of the same
order as the value deduced from weak localization mea-
surements in Pd thin films [17] at the same temperature.
The T�3 decrease of �inðTÞ could be attributed to para-
magnons since they cause the largest inelastic scattering at
low temperature in Pd (a metal close to a ferromagnetic
transition). It is also interesting to note that our results can
be described by a single inelastic time, independent of ’,
whereas a phase dependent �in is expected for electron
phonon collisions in S-N-S junctions [26]. This is probably
due to the fact that temperature is larger than the amplitude
of the minigap in our case.
A similar analysis can be done on �00. The quality of the

calibration is, however, not as good as on �0. Moreover, we
still lack a good analytical prediction for �NDð’Þ, which
gives a large contribution to �00ð’Þ at low temperature and
high frequency. We have overcome this difficulty by sub-
tracting for frequencies larger than 1.7 GHz the flux de-
pendence of �00

ND estimated from the high frequency data
(2.8 GHz). The resulting amplitude ��00

Dð!Þ agrees with
the expected frequency dependence in !�in=½1þ ð!�inÞ2�
as shown in the inset of Fig. 3(c). One can also compare the
independently measured flux dependences of �0 � �J and
�00 with theoretical predictions from the Usadel equations,
FUð�; TÞ. This is done in Fig. 4 for several frequencies,
and a good agreement is found.
With this set of experiments, we have thus shown that

the frequency and temperature dependences of the
response function of N-S rings in a time dependent flux
are consistent with a simple Debye relaxation model of the
population of the Andreev levels. Using fluctuation dissi-
pation theorem one can estimate the related thermody-
namic current noise as

SIð!Þ ¼ 2

�

kBT�
00
Dð!Þ

!

¼ 2

�
kBT

X
n

i2nð’Þ@fn@	n

�
�in

1þ ð!�inÞ2
�
: (4)

Interestingly, the expression of this noise becomes par-
ticularly simple when temperature is much larger than the
minigap, so that ð@fn=@	nÞ is given by 1=kBT. One then
finds that the frequency integrated current noise is just
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�I2 ¼ P
ni

2
n, which corresponds to independent current

fluctuations for each Andreev level.
The measurement of the current linear response of a N-S

ring to a high frequency flux thus reveals two fundamental
mechanisms contributing to dissipation at finite frequency.
One of them, predominant at high frequency and low tem-
perature, describes the physics of microwave-induced tran-
sitions above the minigap. We have clearly identified and
characterized the second cause of dissipation, the thermal
relaxation of the populations of the Andreev states. It is
described by an inelastic ratewhich is extremely sensitive to
the nature of the N-S interface. This dissipative response is
directly related to the low frequency thermal noise of the
Josephson current, with a flux dependence proportional to
the average square of the spectral (or single level) current
and can be precisely described by theoretical predictions.
The type of experiments presented here is uniquely suited to
investigate more exotic systems, for instance, with the
normal diffusive wire replaced by a ballistic wire, leading
to a discrete Andreev spectrum known to be extremely
sensitive to spin orbit interactions [27].
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Phys. Rev. B 83, 144514 (2011).
[9] S. V. Lempitsky, Sov. Phys. JETP 58, 624 (1983).

[10] K.W. Lehnert, N. Argaman, H.-R. Blank, K. Wong, S.
Allen, E. Hu, and H. Kroemer, Phys. Rev. Lett. 82, 1265
(1999).

[11] P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D.
Zaikin, and G. Schön, Phys. Rev. B 63, 064502 (2001); L.
Angers, F. Chiodi, G. Montambaux, M. Ferrier, S. Guéron,
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