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We present a powerful and general approach to describe the coupling of Majorana fermions to external

leads, of interacting or noninteracting electrons. Our picture has the Klein factors of bosonization

appearing as extra Majorana fermions hybridizing with the physical ones. We demonstrate the power

of this approach, analyzing a highly nontrivial SOðMÞ Kondo problem arising in topological super-

conductors with M Majorana-lead couplings, allowing for arbitrary M and for conduction electron

interactions. Mapping the problem on a quantum Brownian motion model we find robust non-Fermi

liquid behavior, even for Fermi liquid leads, and a quantum phase transition between insulating and Kondo

regimes when the leads form Luttinger liquids. In particular, for M ¼ 4 we find a stable realization of

the two-channel Kondo fixed point. Obtaining the linear conductance at low temperatures, we predict

transport signatures of this Majorana-Kondo-Luttinger physics.
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One of the most influential recent discoveries in con-
densed matter physics is that topological phases supporting
Majorana fermions can be engineered in heterostructures
based on s-wave superconductors and materials (e.g.,
topological insulators, semiconductor nanowires) with
strong spin-orbit coupling [1]. This breakthrough develop-
ment, transforming so-far elusive ideas [2] for Majorana
based fault-tolerant quantum computers into a potentially
feasible perspective, drives immense theoretical and
experimental activities (see Ref. [3] for reviews).

Majorana fermions are localized, robust, zero-energy
excitations. Testing the zero bias anomalies [4,5] arising
from electrons tunneling onto them forms one of the main
experimental directions with promising results so far [6].
Transport can also inform on the Majoranas’ quantum
computational potential, if it indicates that the nonlocal
‘‘topological qubits’’ formed of pairs of them obey quan-
tum dynamics [7].

In all transport problems, a key role is played by the
coupling of Majorana fermions � to leads of conduction
electrons c . Here we introduce a general picture of this
coupling, observing that c ¼ �f can be broken into
Majorana (�) and charge density (f) parts using bosoniza-
tion. Upon � hybridizing with the physical Majorana fer-
mion, the charge sector couplings get organized in a simple
structure. Rendering the charge sector transparent is a key
virtue of our picture. It allows one to approach qualitatively
new problems involving the interplay of Majorana fermi-
ons and electron interactions, be those between conduction
electrons or due to the charging of the superconductor.

We demonstrate this by solving a highly nontrivial prob-
lem that includes both types of interactions. This is the
topological Kondo effect [7], which, for M Majorana-lead
couplings implements a novel, SOðMÞ Kondo problem.
Figure 1 shows the setup for M ¼ 5. In Ref. [7], we could
solve the simplest, SOð3Þ � SUð2Þ case for noninteracting

leads. Our picture lets us explore vastly more general set-
tings, allowing for arbitary M and interacting conduction
electrons. We find a number of striking features. These
include stable, non-Fermi liquid (NFL) behavior, even
for Fermi liquid leads, a quantum phase transition between
Kondo and insulating regimes due to the competition
between the Kondo effect and the suppression of electron
tunneling in Luttinger liquids, and a long sought-after, stable
realization of the two-channel Kondo fixed point forM ¼ 4.
Our picture delivers these results with ease through mapping
the problem to a quantum Brownian motion (QBM) model.
We begin by setting up our Majorana-lead coupling

picture more explicitly. We consider a superconducting
structure with Mtot localized Majoranas �j. Their quasi-

particle operators obey [3]

�j ¼ �y
j ; f�j; �kg ¼ 2�jk: (1)

FIG. 1 (color online). Sketch of the topological Kondo
setup forM ¼ 5. The central rectangle is an s-wave superconduc-
tor island (charging energy Ec) with strongly spin-orbit coupled
nanowires (light bars) harboringMajorana end states�j (red dots).

The island is coupled to conduction electron leads (dark bars). The
coupling hybridizes �j with the Majorana part �j (green dots) of

the conduction electron c j ¼ �jfj, organizing the charge sector

problem involving fj in a transparent structure.
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Ordinary fermionic modes cjk ¼ ð1=2Þð�j þ i�kÞ arise

from pairs of Majoranas; in a fermionic system Mtot is
thus even.

We will work with half infinite (x � 0), single-channel
leads furnishing effectively spinless conduction electrons.
This can be achieved in several Majorana realizations [1],
including the nanowire based setups of recent experiments
[6]. Bosonization [8] transforms the Hamiltonian of lead j
into a quadratic problem,

H0ð’j; �jÞ ¼ @u

8�

Z
dxKð@x�jÞ2 þ K�1ð@x’jÞ2; (2)

even if interactions are present. Here, �j, ’j are bosonic

fields encoding the charge density �j ¼ ð@x’jÞ=ð2�Þ.
They obey

½’ðxÞ; �ðyÞ� ¼ 4�i�ðx� yÞ; (3)

where �ðxÞ is the Heaviside function, and satisfy [9]
’ð0Þ ¼ ð@x�Þð0Þ ¼ 0 at the end point of the lead.
Electron interactions enter Eq. (2) through the Luttinger
parameter K and through renormalizing the velocity u.
We have K < 1 (K > 1) in the repulsive (attractive) and
K ¼ 1 in the noninteracting regimes.

Working at energies much below the gap, M leads
couple to the superconductor through M Majorana
fermions [10]:

Ht ¼
XM
j¼1

tj�jc je
i�̂=2 þ H:c:; (4)

where tj is the tunneling amplitude, c j annihilates

electrons at the end of lead j, and the phase exponential

e�i�̂=2 changes the number N of electrons on the super-
conductor by �1.

Bosonization fractionalizes the electron operator as

c jðxÞ ¼ �jfjðxÞ, where fj ¼ ði= ffiffiffi
a

p Þei�j=2 at the endpoint
[9], up to a numerical factor to be absorbed in tj and with

being a the short distance cutoff. The Klein factors �j are

often omitted but for us they are crucial. They obey

�j ¼ �y
j ; f�j;�kg ¼ 2�jk; f�j; �lg ¼ 2�jl: (5)

The first two are standard relations in bosonization; the anti-
commutator, in particular, ensures fc j; c k�jg ¼ 0. The third

relation is less usual: it is introduced to ensure fc j; �lg ¼ 0.

Equation (5) extends Eq. (1). One can thus view �j as

additional Majorana fermions which can, for example,
form ordinary fermion modes dj ¼ ð1=2Þð�j þ i�jÞ with

the physical Majorana fermions. Equation (4) now
becomes

Ht ¼
XM
j¼1

itjffiffiffi
a

p ð�j�jÞðei�j=2ei�̂=2Þ þ H:c: (6)

The coupling terms factorize into Majorana-Majorana and
charge sector parts. This is our main observation.

In the simplest setting [5] of a (grounded) superconduc-
tor coupled to a Luttinger liquid lead (M ¼ 1, Ec ! 0 in
Fig. 1), Eq. (6) immediately recovers a number of results
which previously were accessible only after an elaborate
Jordan-Wigner procedure [11]. Our picture can, however,
be also used to tackle more complex problems. To illustrate
this, we now turn to the topological Kondo effect [7]. In this
Kondo effect strong correlations emerge, even for non-
interacting leads, from the interplay of the charging energy
Ec of the superconductor island (connected to ground by a
capacitor) and the ground state degeneracy [3] associated
with the Majorana fermions [12]. The former enters
through the charging term, HcðNÞ ¼ Ec½N � ðq=eÞ�2,
where q is a background charge (set by the voltage
across the capacitor). The ground state degeneracy comes
from the fermion modes cjk: they have zero energy (up to

exponentially small corrections in the Majoranas’ separa-

tion) which leads to a 2Mtot=2�1 ground states. The
(�1) in the exponent is because of the constraint

ð�1ÞN ¼ ð�1Þ
P

cy
jk
cjk [10].

The fermion modes cjk provide the topological qubits

and the Kondo effect arises from coupling these to con-
duction electrons via the Majorana fermions. For low
temperatures, voltages and weak coupling, T, V, jtjj �
Ec, the physics is dominated by virtual transitions connect-
ing the lowest energy charge state of the island to the
neighboring ones with �1 extra electrons. These are
captured by the effective Hamiltonian

Heff ¼
XM

j�k¼1

�þ
jk�j�kc

y
k c j �

XM
j¼1

��
jjc

y
j c j; (7)

where ��
jk � tjtk=Ec, �

þ
jk > 0. Equation (7) is obtained by a

Schrieffer-Wolf transformation keeping the leading order
terms in tj=Ec. As shown in Ref. [7], the nontrivial lead-

qubit couplings of the first term implement an SOðMÞ
Kondo problem for M � 3 (with a spinor ‘‘impurity
spin’’ through �j�k) [14]. In Ref. [7], the problem in

Eq. (7) was solved for the minimal SOð3Þ � SUð2Þ case
applying the Affleck-Ludwig conformal field theory
method [15]. This is, however, unsuited for interacting
leads and becomes complicated for M> 3. As we now
show, our picture handles both challenges with ease.
Substituting c j ¼ �jfj into Eq. (7), the Majoranas

again enter only through �j�j [16]. Importantly, �j�j

commute with each other and thus can be diagonalized
simultaneously, �j�j ¼ �i, where we can absorb the sign

in �j. We get

Heff ¼ �X
j�k

�þ
jk

e�i�k=2ei�j=2

a
�X

j

��
jj

2�
@x’j: (8)

Equation (8) is the central formula underlying all our
subsequent analysis. We reduced the Kondo problem into
one for the charge densities, eliminating the Majorana
degrees of freedom through the �j�j hybridizations.

PRL 110, 216803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
24 MAY 2013

216803-2



For �� ¼ 0, Eq. (8) is known to map to QBMwhich, for
�þ
jk ¼ �þ < 0, K > 1, is related to the M � 3 channel

Kondo model [9,17,18]. Our SOðMÞ problem is in the
�þ > 0 sector, and we have K � 1 in its lead-Majorana
implementation. Eq. (8), for M ¼ 3, �þ

jk ¼ �þ, ��
jj ¼ 0,

also appeared as an unphysical description of quantum
wire trijunctions, used for illustrating the dangers of
omitting Klein factors [9]. For us Eq. (8) arises precisely
from using Klein factors correctly.

In what follows, we apply the renormalization group to
our full problem, focusing on K � 1 and allowing for the
anisotropy (�þ

jk � �þ) and ��
jj terms arising in a physical

realization. The key aspects of the physics will be shown to
come from the �þ

jk term, extending the relation to QBM to

this more general case. The results will be used to obtain
the low temperature behavior of the (zero bias) Kubo
conductance Gkl between leads k, l. The transport setup
(for M ¼ 5) is sketched in the inset of Fig. 2.

The weak ��
jk flow under rescaling a ! ael, obtained

from the operator product expansion, is

d�þ
jk

dl
¼ ð1� K�1Þ�þ

jk þ 2�
X

m�j;k

�þ
jm�

þ
mk: (9)

Here, � is the density of states of the leads. The couplings
��
jj do not renormalize. As the �þ

jk terms transfer charge

between the leads [see Eq. (7)], the first term in Eq. (9)
promotes a suppression, the second term an enhancement
of tunneling processes. This corresponds to the competi-
tion of two distinct mechanisms: the suppression of
electron tunneling in Luttinger liquids [19], and the
enhancement of the coupling due to the Kondo effect.
Depending on which of these wins one will find a markedly
different low temperature behavior, described by the
decoupled lead and the Kondo fixed points.

The transition between the two cases is governed by a
repulsive, isotropic (�þ

jk ¼ �þ) intermediate fixed point at

��þ? ¼ ð1� KÞ=ð2KðM� 2ÞÞ, with exponent ð1=KÞ � 1
in the relevant, isotropic direction. (The fixed point is
attractive from the orthogonal directions.) This is consis-
tent with the weak coupling regime for K & 1, but we
believe that the existence of an isotropic fixed point
governing the transition remains true in general.

For �� < �þ?, where �� is the typical bare value of �þ
jk,

the low temperature behavior is dictated by the decoupled
fixed point. In the opposite case, �þ

jk flow to large values

while becoming more and more isotropic (consistently
with the flow around �þ?). The crossover to strong
coupling is at the scale of the Kondo temperature,
TK � Ec exp½1=2ð2�MÞ� ���. The analysis of the strong
coupling regime becomes transparent after rotating
� ¼ ð�1; . . . ; �MÞ, ’ ¼ ð’1; . . . ; ’MÞ to decompose them

to R0 ¼ v0 � �, K0 ¼ v0 �’ [with v0 ¼ ð1= ffiffiffiffiffi
M

p Þð1; . . . ; 1Þ]
and to M� 1 components rj, kj along the directions

orthogonal to v0. This canonically decouples the
K0, R0 sector, while the r, k sector has

P
jH0ðkj; rjÞ

perturbed by

Heff ¼ �X
j�k

�þ
jk

eiðwk�wjÞ�r=2

a
�X

j

��
jj

2�
wj � @xk; (10)

where wj � wl ¼ �jl � ð1=MÞ, implying that the minima of

the first term form a (hyper) triangular lattice. Near the
Kondo fixed point �þ ! 1, r tends to be pinned to one of
these minima. This, at the same time, suppresses [9] @xk,
thus the ��

jj term can be neglected in this regime. The ��
jj

couplings, therefore, only give small, marginal perturba-
tions (through the R0, K0 sector) again, showing that the
QBM model indeed captures the essential physics in both
the weak and strong coupling regimes.
Using QBM results [17] we immediately find that the

leading perturbations at the Kondo fixed point, given by r
tunneling between the adjacent minima, have dimension
� ¼ 2KðM� 1Þ=M. The Kondo fixed point is thus stable
as long as K >M=ð2M� 2Þ> 1=2; it is robust against
weak conduction electron interactions and its robustness is
enhanced as M increases. Because of their noninteger
dimension, these charge conserving processes do not admit
a free fermion description. The SOðMÞ Kondo problems
thus give rise to NFL behavior even with Fermi liquid
(K ¼ 1) leads. Such stable NFL fixed points, arising with-
out fine tuning of tunnel couplings or K � 1 leads, are
absent from conventional Kondo systems based on spin
degeneracy [13,20,21]. Our method allows us to prove that
this remarkable feature is a generic property of the topo-
logical Kondo effect, vastly generalizing the M ¼ 3,
K ¼ 1 result of Ref. [7].
In particular, forM ¼ 4, K ¼ 1 we find � ¼ 3=2, as for

the two-channel Kondo fixed point [15]. Through relabel-
ing c j one can indeed map our problem to the two-channel

Kondo model as �þ
jk ! �þ, ��

jj ! 0. The topological

Kondo effect thus provides a long sought-after stable real-
ization of this fixed point that does not hinge on (but is
robust against) having NFL leads, in contrast to earlier
proposals [22]. Placing the two channel Kondo in the
QBM context, we also find a new theoretical perspective,
alternative to Refs. [15,23].
We can now apply our findings to the Kubo conduc-

tance Gkl. The phase diagram in terms of �� and K is
sketched in Fig. 2. Its topology is dictated by the QBM
[17], but the physical meaning of the phases is specific to
the topological Kondo effect. Tuning �� or K, the system
undergoes a quantum phase transition, switching
Gk�l from 0 to ð2K=MÞðe2=hÞ at T ! 0. The transition
using �� is especially appealing, as �� is gate tunable,
in principle, in the nanowire realizations of recent
experiments [6].
Near the decoupled lead fixed point, Gkl vanishes

as Gkl � T2=K�2 as T ! 0. This is the known suppression
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of electron tunneling between Luttinger liquid leads [19],
with the exponent coming from the first term of
Eq. (9).

For T � TK near the Kondo fixed point, we have
Gkl ¼ ð2Ke2=hÞð�kl � ð1=MÞÞþ 	klT

2��2, where 	kl

are nonuniversal constants. The fixed point (T ! 0) value
follows from the emergent boundary conditions r ¼ fixed,
@xk ¼ 0 at �þ ! 1, and can be obtained from an imme-
diate generalization of the calculations of Ref. [9]. Note
that Gll ¼ ðe2=hÞ�. A stable Kondo fixed point (�> 1)
thus comes with Gll violating the e2=h limit for single-
channel normal conduction. This is due to the emergent
boundary conditions translating into correlated, multipar-
ticle Andreev processes by which holes, not only electrons,
can be backscattered [9]. The T2��2 dependence is due to
second order corrections in processes tunneling r between
the minima in Eq. (10). (The first order corrections of the
current-current correlators underlying Gkl vanish [24].)
The convergence to an enhanced conductance through
such nontrivial power laws gives a clear signature of the
NFL Kondo physics.

In conclusion, we have introduced a bosonization
based picture for Majorana-lead couplings relevant to
ongoing transport experiments. The key feature is the
appearance of Klein factors �j, virtually extending the

number of Majoranas in the system. We have illustrated
the utility of our approach by providing a QBM descrip-
tion of the topological Kondo problem with an arbitrary
number of leads of possibly interacting electrons.
We expect that our picture will be a useful starting point
for a number of new problems exploring the interplay
of Majorana fermions and strong correlations.
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