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Recently developed numerical methods have enabled the explicit construction of the superconducting

state of the Hubbard model of strongly correlated electrons in parameter regimes where the model also

exhibits a pseudogap and a Mott insulating phase. dx2�y2 symmetry superconductivity is found to occur

in proximity to the Mott insulator, but separated from it by a pseudogapped nonsuperconducting phase.

The superconducting transition temperature and order parameter amplitude are found to be maximal at

the onset of the normal-state pseudogap. The emergence of superconductivity from the normal state

pseudogap leads to a decrease in the excitation gap. All of these features are consistent with the observed

behavior of the copper-oxide superconductors.
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Layered perovskite-based copper oxide compounds dis-
play three remarkable properties: d-wave superconductiv-
ity with unprecedentedly high transition temperatures [1],
a nontrivial (‘‘Mott’’) insulating state [2], and non-Fermi-
liquid physics, most notably a ‘‘pseudogap’’ regime in
which the density of states is strongly suppressed in
some parts of the Brillouin zone but not in others [3].
P.W. Anderson [2] argued that these three classes of
phenomena have a common origin as strong-correlation
effects understandable in terms of the two-dimensional
repulsive Hubbard model, a minimal model of interacting
electrons on a lattice with Hamiltonian

H ¼ X

p;�

ð�p ��Þcyp;�cp;� þU
X

i

ni;"ni;#; (1)

where "p ¼ �2tðcospx þ cospyÞ þ 4t0 cospx cospy an

electron dispersion and U > 0 a local interaction which
disfavors double occupancy of a site.

In the years since Anderson’s paper, the interplay of the
pseudogap and superconductivity and the relation of both
to the Hubbard model have been of central interest to
condensed matter physicists. The existence of d-wave
superconductivity in the Hubbard model has been demon-
strated by perturbative analytic calculations [4] (later
improved by renormalization group methods [5,6]) and
by numerics [7,8]. The issue of the pseudogap has been
more controversial. It has been variously argued that the
pseudogap is a signature of unusual superconducting
fluctuations [9–11], of a competing nonsuperconducting
phase or regime [3,12], or of physics not contained in
the Hubbard model [13]. Theoretical determination of the
interplay of the pseudogap and superconductivity in the
Hubbard model is important in helping resolve this con-
troversy, and will provide insight into the pseudogap phe-
nomenon and into strongly correlated superconductivity

more generally, but this requires access to intermediate
or strong couplings for which perturbation theory is
inadequate.
The development of cluster dynamical mean field theory

[14] has provided important nonperturbative information
about the Hubbard model. Dynamical mean field theory
approximates the electron self-energy in terms of a finite
number of auxiliary functions determined from the solu-
tion of an N-site quantum impurity model and becomes
exact as N tends to infinity. In this Letter we use dynamical
mean field methods to determine the interplay of super-
conductivity and the pseudogap in the Hubbard model.
This is challenging because the theory of the supercon-
ducting state involves both normal (N) and anomalous (A)
components of the Green’s function G and self-energy �,
leading to a doubling of the size of all matrices involved in
the calculation, and hence to at least an eightfold increase
in computational burden, which is further increased by the
need to reach very low temperatures.
We have constructed the superconducting state and

studied its interplay with the pseudogap using clusters of
N ¼ 4, 8, 16 sites, a size range found in previous work [15]
to be large enough to distinguish generic N ! 1 behavior
from that specific to particular clusters. Specifics of our
methods are given in the Supplemental Material [16]; here
we briefly note that a key aspect of our study is the use of
recently developed ‘‘submatrix update’’ numerical tech-
niques [17–19] which enable access to couplings strong
enough to produce a pseudogap at temperatures low
enough to construct the superconducting state for cluster
size N large enough to reasonably represent the N ! 1
limit. Our key results are that the pseudogap and super-
conductivity are competing phases and that, remarkably,
the onset of superconductivity within the pseudogap phase
leads to a decrease in the excitation gap, in sharp contrast
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to conventional situations where the onset of superconduc-
tivity increases the gap.

Our analysis builds on previous dynamical mean field
results. In pioneering papers Lichtenstein and Katsnelson
[20] and Maier et al. [21] showed that the N ¼ 4 cluster
dynamical mean field approximation yielded dx2�y2 super-

conductivity while subsequent studies of Maier and col-
laborators [7] on clusters with N as large as 26 provided
convincing evidence that the superconductivity found in
the small cluster calculations is not an artifact, but rather
is a property of the infinite cluster size limit, i.e., of the
Hubbard model. However, the studies of Ref. [7] were
restricted to a modest interaction, U ¼ 4t, too small to
give a pseudogap, and to relatively high temperatures, so
that the superconducting state was not constructed and
transition temperature was inferred from studies of the
pair susceptibility. Very recently Yang and collaborators
[22] analyzed the pairing susceptibility for higher interac-
tion strengths where a pseudogap occurred, but still did not
construct the superconducting state.

The pioneering work of Huscroft et al. [23] showed the
existence of a normal-state pseudogap in the dynamical
mean field approximation and many authors (using mainly
N ¼ 4 approximations) have studied its properties [24–42]
and several groups (still within the 4-site approximation)
have studied the interplay of superconductivity and the
pseudogap [32,43–47]. A key finding of the 4-site work,
in contrast to the larger-cluster studies of Ref. [22] is that
superconductivity persists all the way to the Mott insulat-
ing boundary, leaving open the question whether it is the
pseudogap per se, or simply Mott physics, which sup-
presses the superconductivity.

More recent developments [18] have enabled researchers
to access clusters large enough to obtain a reasonable picture
of the N ! 1 limit [15,22,48–52]. It has been found [15]
that in the dynamical cluster approximation (DCA) clusters
of size N > 4 the Mott transition is multistaged, with the
fully gapped Mott insulating state being separated from
the Fermi liquid state by an intermediate phase, in which
regions of momentum space near the ð0; �Þ=ð�; 0Þ point are
gapped and regions of momentum space near (� �=2,
��=2) are not. By contrast, in most of the N ¼ 2, 4 calcu-
lations reported to date there is at half filling no intermediate
phase separating the insulator and the Fermi liquid [35,36],
while if the insulator is destroyed by doping an intermediate
phase with a suppressed, but nonzero, density of states is
found [35,36,42]. In this Letter we extend the new method-
ology to examine the properties of the superconducting state
at N large enough to properly represent the pseudogap.

The right-hand panel of Fig. 1 shows the phase diagram
determined from a comprehensive survey of parameter
space for the N ¼ 8 dynamical cluster approximation,
which previous work [15] shows adequately represents
the N ! 1 normal state physics of the model. Studies of
selected U and doping values in the computationally much
more expensive N ¼ 16 site cluster confirm (lower left

panel) that the physics found for N ¼ 8 is generic. The
scan of the phase diagram is conducted at temperature
T ¼ t=40 but checks of selected interaction and doping
values at our lowest accessible temperature T ¼ t=60 (see
also Ref. [53]) indicate that lower temperatures do not
bring significant changes (see Supplemental Material).
dx2�y2-symmetry superconductivity, with a typical tran-

sition temperature �t=40 � 100 K (using a t � 0:3 eV
representative of the CuO2 superconductors) occurs in a
band of interaction strength and density, vanishing if inter-
action or doping is tuned too far away from the insulating
state but separated from the Mott insulator by a region of
pseudogapped but nonsuperconducting states. This result,
previously inferred from extrapolation of the pairing
susceptibility [22] at high temperature, is here confirmed.
The onset of the normal state pseudogap (dashed line)
corresponds to the maximum in the superconducting order
parameter (see Supplemental Material [16]) and to the
maximum in transition temperature (see below). The inset
of Fig. 2, Supplemental Material [16], shows that the
superconducting region remains separated from the pseu-
dogap even as T ! 0.
The upper left panel shows that the situation is different

in the N ¼ 4 approximation. In this case, superconductiv-
ity extends all the way to the boundary of the Mott phase,
as has previously been found [45–47,54]. We believe that
the difference arises because in the 8- and 16-site cluster
approximations the pseudogap leads at T ¼ 0 to a com-
plete suppression of the density of states in the momentum
region (0, �) important for superconductivity; in the 4-site
approximations the pseudogap produces a density of states

FIG. 1 (color online). Superconducting phase diagram of the
two-dimensional Hubbard model in the plane of interaction
strength U and carrier concentration x computed using the 8-site
(right panel), the 4-site (left upper panel), and 16-site (left lower
panel) DCA dynamical mean field approximation at temperature
T ¼ t=40 with t0=t ¼ 0. Dashed line: location of the normal state
pseudogap onset. Circles and shading (red online) indicate the
superconducting region; squares (black online) and no shading the
nonsuperconducting Fermi liquid; diamonds and lighter shading
(blue online) the nonsuperconducting pseudogap region; triangles
and heavy solid line (dark green online) theMott insulating region
at n ¼ 1 and U >Uc. Open circles (light green online) denote
the points analyzed in Fig. 2. ‘‘Cross’’ and ‘‘plus’’ symbols in the
lower left panel denote points determined by Yang et al. [22] to
be nonsuperconducting and superconducting, respectively.
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which is suppressed relative to the Fermi liquid, but is still
nonvanishing in the regions important for superconductiv-
ity (see, e.g., Fig. 3 of Ref. [36] or Fig. 2 of Ref. [47]).
Variational Monte Carlo studies [55–62] also do not find
an intermediate nonsuperconducting phase; the difference
may have to do with the ability of the variational wave
functions to represent the physics of the pseudogap but this
issue demands further research.

Figure 2 presents the frequency and temperature depen-
dence of the density of states. The upper panel shows spectra
representative of dopings higher than, or interactionsweaker
than, the values which maximize Tc, so that superconduc-
tivity emerges from a relatively conventional normal state.
The spectra are consistent with expectations from standard
theory [63]: the onset of superconductivity is associated
with a suppression of density of states at low frequency
and with the formation of density of states (‘‘coherence’’)
peaks. We define the superconducting gap � as half of the
peak to peak distance. The area in the coherence peaks
comes mainly from the states removed at j!j< �. The
gap amplitude develops very rapidly with temperature:
only at the temperature closest to Tc is the peak to peak
splitting appreciably different from its value at the lowest T.

The situation is quite different when superconductivity
emerges from the pseudogap regime. Representative spectra

are shown in the lower panel of Fig. 2. The normal state
pseudogap is visible at T > Tc as a suppression of the
density of states at low frequencies with a broad gap
structure at higher frequencies. The T < Tc normal state
density of states (obtained by suppressing supercon-
ductivity) displays essentially the same behavior. The
development of superconductivity is characterized by the
formation of coherence peaks at energies below the pseu-
dogap, i.e., by a decrease in gap magnitude as the super-
conducting state is entered. This behavior is consistent
with recent experimental reports [64] that in underdoped
cuprates the emergence of superconductivity out of the
pseudogap regime is associated with the formation of
new states at energies lower than the pseudogap energy
and that the superconducting gap is tied to the pseudogap.
Furthermore, most (typically more than 50%) of the spec-
tral weight in the coherence peak is drawn from frequen-
cies greater than �.
Figure 3 presents the superconducting transition tem-

perature determined as described in the Supplemental
Material [16], as well as the gap values obtained as
described above. Similar to the anomalous expectation
value (inset, Fig. 1), the transition temperature has a dome-
like behavior, with the highest transition temperature
occurring near the onset of the normal state pseudogap
(insets of Fig. 3), whereas the gap monotonically increases
from high to low doping or low to high interaction. We find
2�=Tc � 7:5–8 in the region outside the pseudogap and
becoming rapidly larger within the pseudogap regime as
the endpoint of the superconducting regime is approached,
consistent with dynamical mean field calculations based
on 4-site clusters [32,43–47]. In interpreting the numerical
value of the gap it is important to note that the DCA
procedure, which averages over an entire momentum
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sector, places the peak at a somewhat higher energy than
the true minimum excitation energy. This difference does
not affect the trends of primary interest here.

Further insight into the superconductivity may be
obtained from the imaginary part of the real-axis anoma-
lous self-energy obtained by maximum entropy analytical
continuation as described in the Supplemental Material
[16] and shown in the left panel of Fig. 4. In standard
phonon-mediated superconductivity Im�A is peaked at
frequencies associated with the phonons [65]. At the
weaker coupling U ¼ 4:6 Im�A is spread over a range of
frequencies up to somewhat larger than ! ¼ t, possibly
consistent with a spin fluctuation origin of superconduc-
tivity but as the coupling is increased the weight shifts
dramatically to lower frequencies, and for the strongest
couplings essentially all of the weight is concentrated in a
very low frequency peak. This strong coupling behavior is
highly unusual, and requires further analysis. We also
remark that our 8- and 16-site cluster calculations do not
show evidence for the contribution from higher frequency
(!�U) scales reported by Ref. [44] (see also [66]). This
conclusion is not dependent on analytical continuation: a
contribution along the lines of that reported in Ref. [44]
would lead to a Matsubara-axis anomalous self-energy
which at !� 2t would be �20% of its zero frequency
value. As can be seen from the right-hand panel of Fig. 4
while in the 4-site cluster the Matsubara axis anomalous
� function may be different from zero for !� 2t, for the
larger clusters it clearly has decayed to zero for ! * 2t.

In summary, we have constructed the superconducting
phase and analyzed its competition with the pseudogap.
We find, robustly over a range of cluster sizes, interaction
strengths, and carrier concentrations, that in the Hubbard
model the superconducting and pseudogap phases com-
pete. The competition is manifested by the presence of a
pseudogapped but nonsuperconducting phase close to
the Mott insulator and by a dramatic change in the density
of states, in particular a decrease of the gap size when

superconductivity emerges from the pseudogap state. In
addition, we find that when superconductivity and the
pseudogap coexist, the superconductivity is anomalous,
with the imaginary part of the self-energies characterized
by a sharp large amplitude pole at an energy near zero.
Our results open up important new directions for

research. For the two-dimensional Hubbard model fermion
sign and matrix size issues restrict us in practice to Nc &
16 and interaction U & 7. These values are large enough
to enable access to the doped Mott phase while accessing
large enough cluster sizes to obtain reasonable insight into
the infinite cluster size limit. Even given these constraints,
understanding the anomalous frequency dependence of
the anomalous self-energy at strong coupling and further
investigation of the interplay between the pseudogap and
the superconducting gap, and investigation of two-particle
(e.g., Raman) spectra are feasible. In particular the striking
similarity between the physical behaviors of the doping-
driven and interaction-driven transitions shown in Fig. 3
suggests that the computationally simpler particle-hole
symmetric case will provide valuable generally valid in-
formation. Going beyond the particle-hole symmetric case,
investigations of the effect of second neighbor coupling are
important to determine the factors optimizing Tc. Also, a
significant difference between our calculations and experi-
ment is that we find a larger anomalous Green function
on the electron doped side. Inclusion of long-ranged anti-
ferromagnetism and also extension of our results to the
‘‘three-band’’ copper oxide models is needed to understand
these issues further.
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