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Atomic Bose-Einstein condensates confined to a dual-ring trap support Josephson vortices as topo-

logically stable defects in the relative phase. We propose a test of the scaling laws for defect formation by

quenching a Bose gas to degeneracy in this geometry. Stochastic Gross-Pitaevskii simulations reveal a

�1=4 power-law scaling of defect number with quench time for fast quenches, consistent with the Kibble-

Zurek mechanism. Slow quenches show stronger quench-time dependence that is explained by the

stability properties of Josephson vortices, revealing the boundary of the Kibble-Zurek regime.

Interference of the two atomic fields enables clear long-time measurement of stable defects and a direct

test of the Kibble-Zurek mechanism in Bose-Einstein condensation.
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A possible mechanism for the formation of domain
structures in the early Universe was proposed by Kibble
[1]. He argued that the Universe cooled down after the hot
big bang event and subsequently, passed through a sym-
metry breaking phase transition at a critical temperature
Tc. Causally unconnected spatial domains settling into
different vacua would lead to the formation of defects
like domain walls, monopoles, strings, textures, etc. [2].
Due to thermal fluctuations thwarting the emerging order,
it was postulated that the number of defects eventually
settled at the so-called Ginzburg temperature TG < Tc.

Later, Zurek [3] put forward an alternative argument
focusing on the nonequilibrium aspect of the phase transi-
tion. The density of the defects is determined at the critical
temperature instead and its number is scaled with the
quench rate. The scaling exponent depends on the critical
exponents of the underlying phase transition. This scenario,
known as the Kibble-Zurek mechanism (KZM), should
equally apply to condensed matter phase transitions acces-
sible to laboratory experiments [4]. The KZM proved to be
robust and was verified by a number of recent experiments
on annular Josephson tunnel junctions [5–8] and theoretical
research on Bose-Einstein condensates (BEC) [9–12]. It
also extends to quantum phase transitions [13–15].

In the spirit of Kibble’s argument, one might expect the
KZM to fail in the limit of slow quenches where the time
scale of other processes occurring in the system dominates
over the quench time. Deviations from KZM predictions
were observed in 4He experiments [16] but the interpreta-
tion was controversial [17] and a manifestation of the
Ginzburg temperature was ruled out in Ref. [18]. So far,
the transition between the regime of KZ scaling and its
breakdown has not been studied systematically.

In this Letter, we investigate the robustness of the KZ
scaling in a system where departure from it can be under-
stood in detail because the defects are easily quantified and
are stable at the end of the quench. This avoids the diffi-
culty of counting the decaying population of defects
[12,19] or their remnants [20]. To this end, we study two
linearly coupled quasi-1D atomic Bose gases in the ring
configuration, as in Fig. 1. A quench through the Bose-
Einstein condensation phase transition can generate
Josephson vortices (JVs) confined between two BECs
[21,22]. We show that the number of JVs obeys the KZ
scaling law for fast quenches. On the contrary, for slow
quenches, the predicted behavior deviates substantially,
and we observe a much stronger quench-time dependence
than expected for critical phenomena in our simulations.

FIG. 1 (color online). Schematic of the two linearly coupled
BECs. The isosurface shows the equilibrated condensate density
profile and the color shows a phase profile with three Josephson
vortices resulting from a quench. The trapping potential is
visualized on the left. The interference pattern of the two atomic
fields on the bottom shows clear evidence of the three Josephson
vortices located at the low density regions.
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This is due to decay processes occurring before the topo-
logical stability is established, in analogy to Kibble’s
arguments.

The system under study can be realized by crossing a
vertical Gaussian-Laguerre laser beam and two horizontal
sheet beams [23] to form an optical dipole trap or with rf
dressing on an atom chip [24]. Another way is trapping the
atoms with two hyperfine states coupled via Raman tran-
sitions [25] in a single ring trap [23]. Along the z axis, the
trapping potential can be treated as a double-well potential
as shown in Fig. 1. Assuming tight confinement, the trans-
verse motion can be eliminated. The resulting coupled
Gross-Pitaevskii equations for the order parameter c 1

and c 2 in each ring assume the dimensionless form

i@tc j ¼ ðLj ��Þc j � Jc 3�j; (1)

where Lj ¼ �ð1=2Þ@xx þ gjc jj2 (j ¼ 1, 2), � is the

chemical potential, and J the tunneling energy. Length,

time, and energy are scaled by ah ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p
, 1=!, and

@!, respectively, where m is the atomic mass and ! is the
transverse trapping frequency. Accordingly, the dimen-
sionless nonlinear interaction strength g is related to the
s wave scattering length a by g ¼ 2a=ah.

Equation (1) supports topological and nontopological
defects in the form of the JV and the dark soliton (DS),

respectively, ~c 1;2¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ�

p
tanhðp~xÞ� iBsechðp~xÞ, where

� ¼ J=�, and the scaling x ¼ ffiffiffiffi
�

p
~x and c j ¼

ffiffiffiffiffiffiffiffiffiffi
�=g

p
~c j

has been applied. Both the DS with B ¼ 0 and p ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
and the JV with p ¼ 2

ffiffiffi
�

p
and B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3�
p

for
� � 1=3 are localized excitations on the length scale
ahð ffiffiffiffi

�
p

pÞ�1 above the vacuum where c 1 ¼ c 2 ¼ const

[21]. The DS, where both components have identical pro-
files, is nontopological because it can continuously deform
to the vacuum by a family of moving ‘‘grey’’ solitons with
decreasing energy [26]. Although they may be present
transiently during quenches through the phase transition,
DSs will thus not survive the final stage of cooling.
Furthermore, for � < 1=3, DSs are dynamically unstable
with respect to decay into JVs, which have lower energy
[27]. The stability properties of the JV, on the other hand,
depend on the dimensionless parameter � and may change
during the quench. The JV bifurcates from the DS at
� ¼ 1=3 as a time-reversal symmetry broken state (vortex
and antivortex) with a characteristic phase winding of 2�
around a point located between the two rings (see Fig. 1),
and only exists for smaller values of �. From numerical
simulations, it is known that JVs can move with respect to
the background BEC, although explicit solutions are
unknown. For 1=5< �< 1=3, variational arguments indi-
cate that the JV is energetically unstable [27]. For � < 1=5
where the JV resembles the Sine-Gordon soliton [21,22],
the stationary solution is a metastable local energy mini-
mum, since the energy increases with velocity. Thus, at
sufficiently small �, JVs are topologically stable, enabling
experimental tests of the KZ scaling by counting the

number of JVs at the end of quench in a dual-ring BEC.
The defects would be immediately evident by the interfer-
ence images of two expanding atomic fields. The situation
is strikingly different from a single 1D BEC where the KZ
scaling law was predicted to govern a transient population
of eventually decaying DSs, which makes experimental
detection more difficult [12].
The nonequilibrium dynamics during the thermal

quenches can be described by the coupled stochastic
Gross-Pitaevskii equations [28,29]:

dc j ¼ ðiþ �Þ½ð�ðtÞ �LjÞc j þ Jc 3�j�dtþ dWj; (2)

where � is the growth rate and dWj is the thermal

noise satisfying the fluctuation-dissipation relation
hdW�

j ðx; tÞdWkðx0; tÞi ¼ 2�T�jk�ðx� x0Þdt, with T being

the temperature in units of @!=kB. At the mean field equi-
librium level, the phase transition is described by the ground
state of the energy H ¼R

dx½1=2j@xc 1j2þ1=2j@xc 2j2þ
Vðc 1;c 2Þ�, where we seek the minimum of the potential
Vðc 1; c 2Þ � P

j¼1;2jc jj2½g=2jc jj2 � �� � J½c �
1c 2 þ

c �
2c 1� for J > 0. The symmetry Vðc 1; c 2Þ ¼ Vðc 2; c 1Þ

imposes a common amplitude for the ground state fields.
Taking c 1 ¼

ffiffiffi
n

p
ei�1 , c 2 ¼

ffiffiffi
n

p
ei�2 , and � ¼ �1 ��2,

the minimum of V ¼ gn2 � 2�n� 2Jn cos� occurs at
� ¼ 0, n ¼ ð�þ JÞ=g, for �>�J. At the critical point
� ¼ �J, the minimum is independent of � and each field
breaks Uð1Þ symmetry.
The transition to the broken symmetry phase is simu-

lated via Eq. (2) with time-dependent chemical potential

�ðtÞ ¼ t=�Q; (3)

where �Q is the quench time. The quench starts from a

thermal gas with a chemical potential��0 < 0 and ceases
in the Bose-condensed phase at �0 > 0. Due to interring
coupling, ~�ðtÞ ¼ t=�Q þ J acts as the effective chemical

potential; the precise location of the transition in a dy-
namical quench must be determined numerically. We
evaluate the total number of JVs during the quench with
NJV ¼ H jdð�1 ��2Þj=2�. The net number NJV;net ¼
jH d�1 � H

d�2j=2� is the difference between the num-
ber of clockwise and anticlockwise vortices.
The KZ theory applied to the BEC phase transition gives

the relaxation time and healing length close to the critical
point as

� ¼ �0j ~�j�1; � ¼ �0j ~�j�1=2; (4)

where �0 and �0 depend on the microscopic details of the
system. Following Eq. (3) and the KZ scenario [30], we
obtain the typical size of the domains after the quench

�̂ ¼ �0

�
�Q
�0

�
1=4

; (5)

where for our system �0 ¼ ��1. When �ðtÞ exceeds �J,
localized phase domains start to grow in each ring.
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Typically, a piece of the (anti)vortex will fall within a
�-sized domain in which the phase is chosen randomly.
Therefore, for small J, in a ring with circumference C, the
total number of JVs is estimated to be

hNJVi � C=�̂ ¼ C��1
0

�
�Q
�0

��1=4
; (6)

and thus, obeys the �1=4 power-law scaling with quench
time. The number of JVs, thus, shows a stronger quench-
time dependence than the winding number of a single-ring

BEC, which was predicted to scale with ��1=8
Q [11].

We consider a gas of 87Rb atoms with a transverse
confining frequency of ! ¼ 2�� 200 Hz. We numeri-
cally integrate Eq. (2) with C ¼ 30, T ¼ 10�3, and g ¼
0:05, which are realistic parameters with the setup of
Ref. [31]. The scaling in Eq. (6) is verified by averaging
NJV over 500 trajectories for J ¼ 5 and 25. The value of�0

is chosen to be sufficiently large so that the resulting defect
number is independent of it. As shown in Fig. 2, the results
for fast quenches compare favorably with the KZM pre-
diction, yet the number of JVs deviates from the KZ
scaling for slow quenches.

The stability of a JV depends on conditions that change
during the quench. According to the KZM, two different
regimes exist: For early and late times during the quench,
relaxation is efficient and fluctuations in the Bose gas
follow the changing chemical potential adiabatically.
However, when the diverging relaxation time � of Eq. (4)
exceeds the time scale of the quench �= _�, fluctuations

transiently freeze out and the system enters the impulse
regime. This occurs when

�ð ~�ðt̂ÞÞ ¼ j ~�= _~�jt¼t̂ ¼ t̂; (7)

giving the freeze-out time scale t̂ ¼ ffiffiffiffiffiffiffiffiffiffiffi
�0�Q

p
. At the follow-

ing impulse-adiabatic transition, the frozen fluctuations are
imprinted onto the forming BEC. We, thus, expect that the
stability properties of defects formed at this transition point
determine their survival during the adiabatic phase of the
quench.
In Fig. 3, the impulse-adiabatic transition can be

clearly observed from the particle number, N1;2ðtÞ ¼R jc 1;2ðx; tÞj2dx. A rapid increase of particle number takes

place at ~� ¼ ft̂=�Q, with f 	 4:7. The value of f appears

to depend weakly on the details of the system, including
the parameters J and �, consistent with the theoretical
argument that ~� is relevant for the quench dynamics.
While the particle number is small in the impulse regime,
it follows the dashed linear time dependence in the adia-
batic regime. Similar behavior was observed for a single
ring BEC [11]. Therefore, we can predict the chemical
potential at the impulse-adiabatic transition as:

�̂ ¼ �ðft̂� �QJÞ ¼ f

ffiffiffiffiffiffi
�0
�Q

s
� J: (8)

We denote the critical ratio of tunneling to chemical
potential for JV stability by �c ¼ J=�c, where �c is the
stabilizing chemical potential for given J. As shown in
Fig. 4(a), the defects are frozen in until �̂ > �c for fast

FIG. 2 (color online). Scaling of the total number of JVs with
respect to �Q at J ¼ 5 in (a) and J ¼ 25 in (b) averaged over 500

trajectories of Eq. (2). The error bars indicate the standard
deviations. The red lines show the best power-law fit for fast
quenches with exponents �0:2523� 0:0128 in (a) and
�0:2456� 0:0131 in (b), which agree with the KZM prediction
of �1=4. The dashed lines indicate the critical quench time �critQ

of Eq. (9) for the breakdown of the KZ scaling law.

FIG. 3 (color online). Particle number of component c 1 as a
function of time for J ¼ 5 in (a) and J ¼ 25 in (b). The vertical
scale of the inset is magnified by a factor of 10 and reveal details
for slow quenches. The color-coded labels show different �Q.

Quenches with vastly different �Q show a knee structure char-

acteristic of the impulse-adiabatic transition with a rapid particle
number increase around ~��Q=t̂ ¼ 4:7.
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quenches ensuring the topological protection of JVs and
hence, the KZM signature. However, for slow quenches the
impulse regime terminates earlier with �̂ < �c, which
causes the decay of the JVs in the shaded region in Fig. 4
until the topological stability of JV is established at�ðtÞ ¼
�c. Although the critical �c for a moving JV at finite
temperatures is unknown, we can estimate �c from the
numerical simulations, at the point where KZ scaling
breaks down. From Eq. (8), we obtain the criterion for
obtaining stable JVs

�Q < �critQ ¼ �0f
2ð�c=JÞ2ð1þ �cÞ�2: (9)

The value �c ’ 0:0813 is obtained from the data for J ¼ 5,
which suggests �critQ ¼ 0:02 for J ¼ 25, as shown by the

vertical dashed line plotted in Fig. 2(b). This prediction
agrees with the numerical data very well. The critical
quench time depends on the growth rate through �0, and
we have also verified the prediction of Eq. (9) at different
growth rates. In the slow quench regime, as seen in Fig. 2,
the defect number falls off more rapidly with quench time
than expected from the KZM. Since the variation is far
from linear, we do not expect to enter a new regime of
power-law scaling for slow quenches. Note that slow
quenches show the same knee structure characterizing
the impulse-adiabatic transition as the fast quenches that
lead to KZ scaling (Fig. 3). We have also verified that hNJVi
continues to satisfy the KZ scaling for slow quenches
(solid line in Fig. 2), when counted immediately after
the impulse-adiabatic transition at �̂. This supports our

argument that the reduced defect number is due to thermal
decay processes happening after the transition, and that
defect formation is unaffected by thermal fluctuations
during freeze-out. Moreover, by varying the circumfer-
ence, we verify that the KZM departure is not due to the
finite-size effects discussed in Refs. [30,32,33].
For JVs, the slow quench regime is similar to Kibble’s

idea [1], where thermal fluctuations suffice to destroy the
emerging order before the system reaches the Ginzburg
temperature. We observe a Ginzburg-like regime where
thermal effects destroy the pattern of symmetry breaking
inherited from criticality during the interval �̂ < �<�c,
shown in the shaded region of Fig. 4(b). This scenario is
consistent with the evolution of the net number of vortices
during a quench shown in Figs. 4(c) and 4(d). This measure
is an indicator of the stability of individual JVs, unlike the
total number that is affected by their pairwise annihilation
(to which KZ scaling is immune).
The absence of any clear cut evidence of cosmological

nature and the difficulty in observing the KZ scaling in
condensed-matter experiments is usually not attributed to
the failure of the mechanism but may be explained by the
decay of defects in the post-quench era [12,19,20]. This is
circumvented if the formed defects are topologically pro-
tected. The defects observed in the successful experiments
of Refs. [5–8] have this property, as do the JVs that are the
subject of this Letter. While cosmological defects pro-
tected by topology may still survive in dark matter or
dark energy, their detection is difficult [34].
Our work paves the way for a direct test of KZM in the

Bose-Einstein condensation phase transition, by eliminat-
ing post-quench decay of defects [11]. The quench of �
could be supplanted by a controlled sweep of J, providing
another knob for varying the quench time.
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