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The conservative cascade of kinetic energy is established using both Fourier analysis and a new exact

physical-space flux relation in a simulated compressible turbulence. The subgrid scale (SGS) kinetic

energy flux of the compressive mode is found to be significantly larger than that of the solenoidal mode in

the inertial range, which is the main physical origin for the occurrence of Kolmogorov’s �5=3 scaling of

the energy spectrum in compressible turbulence. The perfect antiparallel alignment between the large-

scale strain and the SGS stress leads to highly efficient kinetic energy transfer in shock regions, which is a

distinctive feature of shock structures in comparison with vortex structures. The rescaled probability

distribution functions of SGS kinetic energy flux collapse in the inertial range, indicating a statistical

self-similarity of kinetic energy cascades.
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Compressible turbulence is of fundamental importance
in a wide range of engineering flows and natural
phenomena including high-temperature reactive flows,
hypersonic aircrafts, and star formation in galaxies [1,2].
However, the basic processes occurring in compressible
turbulence are less understood as compared to those occur-
ring in incompressible turbulence. It is crucial to clarify the
underlying physics of the interscale transfer of kinetic
energy in compressible turbulence. In this Letter, we
describe an investigation of Kolmogorov’s �5=3 scaling
of the kinetic energy spectrum and the conservative cas-
cade of kinetic energy in the presence of large-scale shock
waves in compressible turbulence, with a specific focus
on the drastic enhancement in kinetic energy flux through
shock structures.

Fully developed three-dimensional (3D) incompressible
turbulence exhibits Kolmogorov’s �5=3 energy spectrum
in the inertial range that is generated and maintained by a
nonequilibrium process, viz., the conservative cascade of
kinetic energy from large scales to small scales [3,4]. In
compressible turbulence, there are nonlinear interactions
between solenoidal and compressive modes of velocity
fluctuations. Moreover, quasi-2D shock waves add a new
type of flow structures in addition to quasi-1D intense
vortices as in incompressible turbulence, which further
complicates the kinetic energy transfer process in com-
pressible turbulence. Interestingly, the Kolmogorov’s
�5=3 energy spectrum of velocity has been reported in
supersonic motions of interstellar media [5–7]. High reso-
lution numerical simulations for supersonic isothermal
turbulence showed the �5=3 spectrum of the density-

weighted velocity v ¼ �1=3u, where � is the density and
u is the velocity [8,9]. Aluie [10,11] proved that the kinetic
energy cascades conservatively in compressible turbu-
lence, provided that the pressure-dilatation cospectrum

decays at a sufficiently rapid rate. This analysis was further
supported by numerical simulations of both forced and
decaying compressible turbulence [12].
Here, we utilize a novel hybrid numerical method [13] to

simulate a compressible turbulence in a cubic box at a
10243 grid resolution. We apply large-scale force to both
solenoidal and compressive components of the velocity
field [14–16]. The flow is evolved to about 6Te, where

the large-eddy turn over time Te ¼
ffiffiffi
3

p
L=urms, where L is

the integral length scale and urms is the rms velocity
magnitude. Various statistics of the simulated flow are
averaged over the time interval 3:6< t=Te < 6:0. The
turbulent Mach number Mt ¼ urms=hci ¼ 0:62, where hci
is the average sound speed, and the Taylor microscale
Reynolds number R� ¼ 160. The highest local Mach num-
ber exceeds 2.5, and sheetlike shock waves of large-scale
size are generated in the simulated flow.
Helmholtz decomposition of the density weighted

velocity w ¼ ffiffiffiffi
�

p
u yields a solenoidal component ws and

a compressive component wc: w ¼ ws þ wc, where r �
ws ¼ 0 and r� wc ¼ 0. The average kinetic energy
Ek ¼ hw2=2i can be decomposed by Ek ¼ Es

k þ Ec
k, where

Es
k ¼ hðwsÞ2=2i and Ec

k ¼ hðwcÞ2=2i. In our simulation,

Ec
k=E

s
k ¼ 2:7; i.e., the compressive kinetic energy is sig-

nificantly larger than its solenoidal counterpart. Figure 1(a)
shows that the kinetic energy spectrum exhibits a �5=3
scaling and its compressive component displays a �2 scal-
ing in the inertial range of 4 � k � 20 (see Supplemental
Material [17]). To clarify the k�2 compressive spectrum, we
consider the equation of the velocity potential� defined by
uc ¼ �r� (where uc is the compressive velocity compo-
nent, see Supplemental Material [17]):

@t�� 1

2
r� � r� ¼ 4�

3
r2�þ Np þ Nsol þ F; (1)
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where, Np ¼ r�2½r � ðrp=�Þ� and p is the pressure. Nsol

represents the impact of the solenoidal velocity component.
� is the coefficient of viscosity, and F is the potential of
external force. According to the theory of 3D Burgers
turbulence [18], large-scale shock waves can be generated
through the effect of potential gradient square r� � r�,
leading to a k�2 spectrum of uc at moderate and high Mach
numbers. Moreover, we find that the two spectra for uc and
wc are almost identical, indicating the negligible effect of
density in our simulated flow.

In Fig. 1(b), we present the kinetic energy flux due to the
advection and the pressure, namely,

�TðkÞ ¼ �AðkÞ þ�PðkÞ; (2)

where �AðkÞ ¼ P
jkj<khRe½ŵ�ðkÞ � ð du � rwþ cw�=2ÞðkÞ�i

and �PðkÞ ¼ P
jkj<khRe½ŵ�ðkÞ � ð drp=

ffiffiffiffi
�

p ÞðkÞ�i [19,20].

The energy flux has been normalized by the total dissipation
�T ¼ �hp�i þ �0 [21], i.e., the total conversion rate of
kinetic energy into internal energy by the pressure-dilatation
work �hp�i and the viscous dissipation �0. The kinetic
energy flux is approximately constant in the inertial range
of 4 � k � 20. Particularly, the ratio of �AðkÞ to �PðkÞ is
about 0:65:0:35 in the inertial range, indicating the remark-
able effect of pressure on the kinetic energy transfer.

We now introduce the physical-space kinetic energy flux
defined by [3,22]

�ðrÞ � �@thwðxÞwðxþ rÞ=2ijNL; (3)

where, @tðÞjNL denotes the time-rate-of-change by the non-
linear terms including advection and pressure. Specifically,
the flux for homogeneous isotropic turbulence (see
Supplemental Material [17]) is �ðrÞ¼½�rr �ðSwðrÞr=rÞþ
TDðrÞþTPðrÞ�=4, where SwðrÞ ¼ hð�wÞ2�u � r=ri is a
third-order structure function of velocity. TDðrÞ ¼
h�w � ð�w0 � �0wÞi and TPðrÞ¼2hw0 �ðrp= ffiffiffiffi

�
p Þþw�

ðr0p0=
ffiffiffiffiffi
�0p Þi, respectively, represent the impact of dilata-

tional motion and pressure. Here, increments of w and u
are defined by �w ¼ w0 � w and �u ¼ u0 � u, respec-
tively, and the prime is used to denote variables at the point
x0 ¼ xþ r. We plot the rescaled third-order structure
function SwðrÞ=r as a function of the separation r in
Fig. 1(c). The separation r has been normalized by the
Kolmogorov length scale �. The function SwðrÞ=r is nearly
constant in an inertial range, such that Sw � �Cw

0 �Tr,
similar to the case of incompressible turbulence, but the
coefficient Cw

0 ¼ 1:95 is substantially larger than C0 ¼
4=3 found in incompressible turbulence [23]. Moreover,
Fig. 1(c) shows that TDðrÞ=�T � �CD

0 and TPðrÞ=�T �
CP
0 in the inertial range, where CD

0 ¼ 3:15 and CP
0 ¼ 1:45.

Consequently, the physical-space kinetic energy flux via
advection [i.e., the first and second terms in �ðrÞ] is about
0:68�T , and that via pressure is about 0:36�T .
We suppose that the dissipation acts mainly at the small-

est scales of turbulence [10,11], leading to �ðrÞ ¼ �T for
the separation r in the inertial range in compressible tur-
bulence driven by a proper large-scale force. This yields
a new flux relation in compressible isotropic turbulence
[22–24], which can be expressed by

rr �
�
SwðrÞ r

r

�
¼ �4�T þ TDðrÞ þ TPðrÞ: (4)

Particularly, Cw
0 ¼ ð4þ CD

0 � CP
0 Þ=3 in the inertial range,

in good agreement with the numerical results. The effect of
dilatation is to enlarge the coefficient Cw

0 , while the effect

of pressure is to decrease Cw
0 . We note that the impact of

external forcing is small, considering that the variation in
the density field is not very strong in our simulated flow
compared to that in the supersonic isothermal turbulence at
the turbulent root-mean-square Mach number 6 [24]. In the
limit of incompressible turbulence, this relation reduces to

rr � hð�uÞ2�ui ¼ �4�0; (5)

which is equivalent to Kolmogorov’s 4=5 law in isotropic
incompressible turbulence [23].
We now employ a ‘‘coarse-graining’’ approach [10]

to study the cascade of kinetic energy. We begin with
the definition of a classically filtered field �aðxÞ �R
d3rGlðrÞaðxþ rÞ, where GlðrÞ � l�3Gðr=lÞ is the ker-

nel and GðrÞ is a normalized window function. The Favre
filtered field is defined as ~a � �a= ��. The filtered equation
for the kinetic energy reads

k
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FIG. 1 (color online). (a) Spectra for kinetic energy and its two
components; (b) Fourier-space kinetic energy flux; (c) structure
functions in the physical-space kinetic energy flux.

PRL 110, 214505 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
24 MAY 2013

214505-2



@t
��j~uj2
2

þr � Jl ¼ ��l ��l ��l �Dl þ "inj; (6)

where, the kinetic energy flux due to the subgrid scale

(SGS) stress is �l¼�r~u:½ ��ðfuu�~u~uÞ�, the energy flux
due to the turbulent mass flux �l ¼ r �p � ð�u� �� �uÞ= ��,
and the large scale pressure-dilatation �l ¼ � �p�l [10]. Jl
is the spatial transport flux of large-scale kinetic energy,Dl

the viscous dissipation term, and "inj the energy injected
by forcing. We present the spatial average of the SGS
energy flux and the pressure-dilatation in Fig. 2(a).
The filter width l has been normalized by the
Kolmogorov length scale �. The pressure-dilatation �l is
nearly constant at scales l=� < 100, qualitatively consis-
tent with the result reported by Aluie et al. [12]. The
average of both �l and �l are nearly constant over an
inertial range 20< l=� < 100, indicating the existence
of a conservative cascade of kinetic energy through the
inertial range [10–12].

Helmholtz decomposition on the SGS energy flux yields

�l ¼ �s
l þ�c

l , where �s
l ¼�rð~ws=

ffiffiffiffi
��

p Þ:½ ��ðfuu�~u~uÞ�
and�c

l ¼ �rð~wc=
ffiffiffiffi
��

p Þ: ½ ��ðfuu� ~u ~uÞ�, that is, the turbu-
lent stress acting against the large-scale strain which
is due to the solenoidal or compressive component of
the density-weighted velocity, where ~ws and ~wc are,
respectively, the solenoidal and compressive components

of ~w ¼ ffiffiffiffi
��

p
~u. We note that the average of �s

l (�c
l ) is

exactly equal to the average flux of ~Es (or ~Ec) from large
scales to subgrid scales, owing to SGS stress, where ~Es ¼
hð ~wsÞ2=2i and ~Ec ¼ hð ~wcÞ2=2i. Figure 2(b) shows that the
average SGS energy flux of both solenoidal and compres-
sive modes is nearly constant in the inertial interval,
namely, h�s

l i � 0:075�T and h�c
l i � 0:62�T . Thus, the

compressive component of the kinetic energy cascade is
significantly faster than its solenoidal counterpart, leading
to the dominance of the solenoidal kinetic energy spectrum
at high wave numbers in the inertial range. Therefore, both
the overall kinetic energy spectrum and its solenoidal
component exhibit Kolmogorov’s �5=3 scaling at high
wave numbers in the inertial range. This is further con-
firmed by numerical simulation of Euler equations with an
eighth-order hyperviscosity [13], at the same turbulent
Mach number Mt ¼ 0:62 and 5123 grid resolution [see
Fig. 2(c)]. The power-law exponents are found to be
�1:66 and �2:02, respectively for the solenoidal and
compressive kinetic energy spectra in the range of 4 � k �
30 by least square estimation (see Supplemental Material
[17]). Since the inertial-range statistics are independent of
the dissipation mechanism [25,26], both the overall kinetic
energy spectrum and its solenoidal component should
have a clear �5=3 scaling at higher Reynolds numbers in
compressible turbulence with normal viscosity.
Figure 3 shows a 3D visualization for the isosurfaces of

the solenoidal component�s
l and the compressive compo-

nent �c
l of kinetic energy flux. Only the 5123 mesh points

are shown. ð�s
l Þrms and ð�c

l Þrms are the rms values of �s
l

and �c
l , respectively. The figure reveals a dramatic differ-

ence between the spatial structures of �s
l and �c

l . The

isosurfaces of �c
l have large-scale sheetlike structures,

whereas the isosurfaces of �s
l tend to exhibit coarse-

grained blocklike structures that are similar to those in
incompressible turbulence [27]. This observation indicates
a significantly greater intermittency of the compressive
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FIG. 2 (color online). (a) SGS kinetic energy flux and large
scale pressure-dilatation work; (b) solenoidal and compressive
components of SGS kinetic energy flux �l; (c) spectra for
kinetic energy and its two components in the hyperviscosity
simulation.

FIG. 3 (color). Isosurfaces for the solenoidal and compressive
components of SGS kinetic energy flux �l in a 5123 subdomain
(the filter width l ¼ 16�). (1) Yellow surfaces for �s

l ¼
12:0ð�s

l Þrms, and (2) red surfaces for �c
l ¼ 12:0ð�c

l Þrms.

PRL 110, 214505 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
24 MAY 2013

214505-3



energy flux component compared to its solenoidal
counterpart.

The rescaled probability distribution functions (PDFs)
of the SGS kinetic energy flux are depicted in
Fig. 4. The rescaled PDFs of �l exhibit a strong skewness
toward the positive side, showing a substantial difference
from the case of incompressible turbulence [27], wherein
the PDFs of the SGS energy flux have a moderate skew-
ness. Therefore, most of the kinetic energy transfer due to
the SGS stress is from large scales to small scales.
Meanwhile, the rescaled PDFs of �l display a strong
skewness toward the negative side, indicating that most
of the kinetic energy transfer due to the SGS mass flux is
from small scales to large scales. We note that the extended
and long PDF tails of the SGS kinetic energy flux have a
major contribution from shock regions. Moreover, the tails
of the rescaled PDFs of the SGS kinetic energy flux col-
lapse to the same distribution for all l in the inertial range.
According to the multifractal theory [26], the scaling
exponents for the moments of l�l and l�l should saturate
at the value of z1 ¼ 1 for high orders, namely, hjl�ljni 	
lz1 and hjl�ljni 	 lz1 for large n. This prediction reveals a
statistical scale-invariant property of energy flux in the
inertial range and demonstrates the similarity between
compressible turbulence and 1D Burgers turbulence [28].

To further clarify the impact of shock waves on kinetic
energy transfer, we apply the average of various quan-
ties conditioned on the filtered dilatation �l ¼ r � �u.
Figure 5(a) depicts the conditional average of c and � for

l¼32�, where c¼~S: ~	=ðj~Sjj~	jÞ and �¼r �p�ð�u� �� �uÞ=
ðjr �pjjð�u� �� �uÞjÞ. Here, the large-scale strain is ~S ¼
ðr~uþr~uTÞ=2 and the SGS stress is ~	 ¼ ½ ��ðfuu� ~u ~uÞ�.
Both the averages c and� are close to�1 for �l=�

0
l <�2,

indicating antiparallel alignments between the large-scale
strain and the SGS stress, and between the pressure gradient

and the turbulent mass flux vector in shock regions. The
perfect alignments maximize the SGS kinetic energy flux,
which is a distinctive feature of shock structures in compari-
son to vortex structures. In 3D incompressible turbulence,
vortex dynamics induces a considerably weaker alignment
between the large-scale strain and the SGS stress. For strong
positive filtered dilatation, there is a tendency of parallel
alignment between the large-scale strain and the SGS stress,
indicating that an inverse cascade of kinetic energy due to
SGS stress occurs locally in strong expansion regions. We
plot the average of the SGS kinetic energy flux conditioned
on the normalized filtered dilatation in Fig. 5. The condi-
tional average of normalized �l is well approximated by

ð�l=�0lÞ2 in compression regions, where
 ¼ 1:05 for filter
widths l in the inertial range. This observation is consistent
with the kinetic energy cascade scenario [10–12], as well as
the fact that the local viscous dissipation of kinetic energy
increases linearly with the square of dilatation in shock
regions [21].

Finally, we emphasize that the k�5=3 spectrum of the
overall kinetic energy and the k�2 spectrum of the com-
pressive kinetic energy are revealed at a moderate turbulent
Mach number. As Mach number increases, the interactions
between the solenoidal and compressive modes will become
stronger, probably leading to a tendency of energy equipar-
tition between the two modes [29]. Previous studies on
numerical simulations of Euler equations showed that the
spectrum exponents for both the solenoidal and compressive
velocity are very close to�2 at high Mach numbers [8,16].
However, the simulations might be substantially contami-
nated by the excessive numerical dissipation of low-order
schemes in these works. Therefore, several issues require
further investigations through high-order numerical simula-
tions, including the spectrum of solenoidal velocity and the
effect of density variations on the kinetic energy spectrum at
high turbulent Mach numbers.
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