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Single Flow Snapshot Reveals the Future and the Past of Pairs of Particles in Turbulence

Gregory Falkovich'? and Anna Frishman'

lPhysics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

*Institute for Information Transmission Problems, Moscow, 127994 Russia
(Received 7 March 2013; published 21 May 2013)

We develop an analytic formalism and derive new exact relations that express the short-time dispersion
of fluid particles via the single-time velocity correlation functions in homogeneous isotropic and
incompressible turbulence. The formalism establishes a bridge between single-time Eulerian and long-
time Lagrangian pictures of turbulent flows. In particular, we derive an exact formula for a short-term
counterpart of the long-time Richardson law, and we identify a conservation law of turbulent dispersion

which is true even in nonstationary turbulence.
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Introduction.—There are two alternative types of
description in physics: one either uses a coordinate system
fixed in space or follows particles. In fluid mechanics, the
former is called Eulerian and the latter Lagrangian [1].
Respectively, our knowledge of turbulence roughly can be
divided into two parts. On the Eulerian side, we have
experimental and numerical data on the single-time (snap-
shot) velocity statistics: the moments of the velocity dif-
ference i measured at the distance R are (") & Ré». As for
theory, the only analytic result is (u;) = —12€R/d(d + 2),
where € is the energy spectral flux, negative in 2d and
positive in 3d, u; = (i - R)/R and d is space dimension-
ality [2,3]. For d = 3, it is Kolmogorov’s 4/5 law. On the
Lagrangian side, the long-time growth of the interparticle
distance was inferred by Richardson from atmospheric
data, (R?(t)) ~ |e|}, which was neither properly observed
in a controlled laboratory experiment nor derived analyti-
cally. Here and below, all averages are over an ensemble of
pairs whose separation initially was the same: R(0) = R,,.
Kolmogorov and Richardson laws, respectively, Eulerian
and Lagrangian, are apparently related by € and yet it is not
known if the latter is a consequence of the former.

Here we develop a formalism, which is a bridge between
Eulerian and Lagrangian approaches; see also [4,5]. We
derive a relation, which is a Lagrangian consequence of the
Kolmogorov law and a short-time counterpart to the
Richardson law. We express the Lagrangian time deriva-
tives of the correlation functions of & and R at 7 = 0 in
terms of the Eulerian moments of iz. For short times, these
determine the temporal evolution of the correlation func-
tions by a Taylor expansion in . Previously, analytic results
on Lagrangian evolution were derived either for spatially
trivial smooth flows at the long-time limit or for the
temporally trivial short-correlated Kraichnan model. We
derive some new results for these two cases, as well as for
the general case of spatially nonsmooth temporally corre-
lated flow which corresponds to the inertial interval of
turbulence.
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Of most interest is to find quantities conserved in time or
at least having time derivatives all zero at ¢t = 0; the latter
does not guarantee the former, as we shall see below. Apart
from 1d compressible random flow where the interparticle
distance itself is a statistical integral of motion [6], the only
fact known before about two particles is that ((R(1)]~¢)
does not change at + — oo in a spatially smooth incom-
pressible flow (in the viscous but not inertial interval) [7].
One may think that the time dependence saturates only in
the long-time limit when starting conditions are forgotten.
However, here we show that (R’d> is an all-time genuine
integral of motion for statistically isotropic spatially smooth
random flow, even nonstationary. To turn time derivatives
into zero we shall use the simple mathematical fact

Vi(R;R™4) = 8(R). (1)

Using that it is zero for R # 0, we find the general con-
served quantity (¢ ™R~-4=a=m(j - R)m).

For the Kraichnan model with spatially nonsmooth
velocities we show that the moment, which generalizes
(R™9), has all time derivatives zero at t = 0, although it
is not constant in time. For real turbulence in the inertial
interval (spatially nonsmooth yet temporally finite-
correlated), we find that a direct analog is (R>~ ¢~ 9). It
has the first two derivatives equal to zero, but not the third
one, showing what little traces of the conservation are left
away from the limiting cases of velocities either spatially
smooth or temporally white. This moment is nonetheless of
much physical interest as both a short-time analog of the
Richardson law, whose evolution is determined by the
energy flux, and as a measure of the irreversibility of
particle dispersion.

Statistics of the distances.—Let us first calculate the time
derivatives of correlation functions involving only R using
the probability distribution function (pdf)

P(R, 1: Ry, 0) = <6(1$ — Ry — ﬁ) ’ ﬁ(t’)dt’)). 2)
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The integral is over Lagrangian trajectories and averaging
here and everywhere is over u. To calculate time deriva-
tives at = 0 of any mean,

<ﬂmm=[nmﬂkmmwm 3)

we first differentiate the 6 function (and velocities), then
set = 0, turning the & function into (R — Ry):

where d/dt = 0, + ii - Vg is implied. Here and below,
unless stated otherwise, averages without an explicit speci-
fication of the time are taken at t = 0.

When the velocity statistics is stationary,

d? &
<ﬁ> = <uiviuj>vj, <%> = <uiviujvjuk>vk,

at du; ou;
<ﬁ> — V0,V 1, V)V, — v,(a—t’ a—tf>v .
Velocity time derivatives (acceleration, etc.) appear only
starting from n = 4. Therefore, in a general case, the
velocity snapshot contains enough information to describe
evolution up to #* terms. For translation invariant incom-
pressible flow, the first two derivatives can be simply
obtained from the velocity single-time pdf f(if) assuming
that the velocity difference does not change with time:

PR, 1; Eo, 0) = |f|7df[(ﬁ - ﬁo)/l]-

This ballistic regime was first considered in [8]; it is
relevant for many physical situations [9].

Consider now general scalar correlation functions of the
form (F(ii(t), R(¢))), which may also include time deriva-
tives d"ii/dr". Let us label the particles by the indices 1, 2
and denote Eulerian spatial coordinates by r. Taking the
Lagrangian time derivative,
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at t = 0, one can set R = ﬁo in the term with the partial
time derivative. It then turns into a Eulerian correlation
function, where the average is done over all pairs in the
flow separated by the same distance. Using incompressi-
bility and homogeneity, we rewrite the sum of spatial
derivatives and obtain

(G R)imo = (PG, Ro) + Vi FGG Ry, (5)

We apply the formalism first to a spatially smooth
random flow with isotropic but not necessarily stationary
statistics. In this case, &£, = n; i.e., the relative velocity is
proportional to the distance, ii = &(t)R(f), where 6(7) is a
random traceless matrix with isotropic statistics. Such is
the case, for example, in the viscous interval of turbulence,

where the separation between the particles is much smaller
than the viscous scale for elastic turbulence and many other
cases related to dynamical chaos. It has been shown by
Zel’Dovich et al. [7] that {{R(1)]"%) does not change at
t — o0 in a steady flow, using the formalism of Furstenberg
[10]. Another proof under the same conditions is in [11].
Let us show that all the time derivatives at t = 0 are zero
for F(R) = R™“. This is a consequence of (d"R~9/dt") =
0 when taken at R = R, without additionally setting t = 0
in &(z). To show this we note that the first time derivative at
R = R, is zero by virtue of isotropy:

(dR™7/dt) = (o ;;(1))R)R}R; % = 0. (6)

We can now use induction and express the n + 1 time
derivative at R = R, similarly to (5),

dn+1 4 ar J o d"
— R4} = Y+ Vi{u'—R"?).
G ) = oGt ) = v Gk )

On the right side, the first term is zero by the induction
hypothesis, and the second term is zero because of (1) and
(u'd"R™?/dt"y « RiR; ¢ at R = R,. An alternative deriva-
tion is given after (16) for the stationary case. Our simple
argument shows that

(RO = Ry“, (7

for all ¢ even for a time-dependent statistics. The universal-
ity of this statistical conservation law follows from the
simple dynamical statement: in every realization of an
incompressible spatially smooth flow, the integral of
[R(1)]~¢ over the directions of the initial vector, Ry, is
constant in time. That statement can actually be found by
taking a closer look at the argument (not only result) of [7].
For isotropic flows this integral can be interpreted as an
average over the angular degrees of freedom, which gives
(7). Understanding that (7) holds for all times, even in the
case of decaying turbulence, opens the door for its experi-
mental verification, lacking so far.

Nonsmooth velocity.—Now we ask if a similar conser-
vation law exists in a spatially nonsmooth case. The only
known results are for the Kraichnan model where the
velocity is statistically stationary, homogenous, and
delta correlated in time: (u;(t)u;(t')) = Dij(§)5(t —1).
The pdf satisfies the equation 9, = V,D;;V,P = M?P,
see, e.g., [11]. For an incompressible statistically isotropic
flow, D;(R)=R[(d+1—y)6;R*— (2~ y)RR;],
where vy is thus the measure of velocity nonsmoothness,
and time scales as R”. The role played by (R™“) in a
smooth case is now assumed by (R?~¢), which follows
from MRY~? = §(R). Indeed, this means that the first
time derivative at any ¢ is proportional to the probability
of two particles initially separated by a distance R, to come
together at time 7 [11]:

£<er> — P(0, £; Ry, 0). (8)
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Using the pdf from [11,12], we derive <|: R ]5/3> | 14er’ (12)
P(0, t; Ry, 0) o R e|~4/7 exp(—dRY /¥?It]).  (9) R(1) 81RZ

So, while (R”~4) is not conserved in the Kraichnan model,
all its time derivatives are zero at ¢ = 0 since P(0, t; R, 0)
has an essential singularity. Time derivatives in the
Kraichnan model differ from (4), where we first set t = 0
and only then average over velocities. The two procedures
commute for finite correlated velocities but not for
6-correlated ones.

Let us now look for a special moment F (R) = R” with
zero time derivatives in a real turbulence with finite tem-
poral correlations. From now on we consider stationary
statistics. The first time derivative is zero for any b due to
isotropy, then, assuming in addition incompressibility and
translational invariance,

& RY W) jd R b (i)

— — V=g, b L, <__>= + b)= L.,

<dz2 Rg> PR ARy BT s
(10)

where a; = d — k + &, + b. For all moments but one, the
second derivative is nonzero and short-time evolution is
quadratic in time, i.e., ballistic.

The exceptional moment R2~¢2~¢ which has both first
and second derivatives zero, is a direct analog of R ?in
the Kraichnan model. The similarity between these two
cases is related to the fact that the operator (d*/dt*) =
Viuu)V; = M has the same structure as the operator
M = V,D;;V;, which determines the time evolution of the
distance pdf in the Kraichnan model. Moreover, zero time
derivatives at ¢ = 0 of (R(t)>"%2~?) also originate from
MR 64 = §(R). However, the third time derivative
(10) of R*™%79 is nonzero, in distinction from the
Kraichnan model.

Similarity to the Kraichnan model may tempt one to
conjecture that (d>R>~$279/dt*) « P(0, t; R, 0) for finite
correlated velocities. To show that this is not the case, note
that 9" P(R, 1; Ry, 0) at t = 0 is proportional to 8(R — R;)
that is zero for R # 130. Thus, (0, £; Ry, 0) has an essential
singularity at t = 0 like in the Kraichnan model. Since
(d®*R*$71/df?) has a nonzero first derivative, then it
cannot be proportional to P(0, ¢; Ry, 0) in finite-correlated
flows. Indeed, it is quite general that a probability to cross a
finite distance (from R, to 0) has an essential singularity at
t = 0. On the other hand, nonanalyticity of the moment
evolution (R?(f)) is an artifact of the delta-correlated model
and does not take place for a finite-correlated flow.

Let us now describe the short-time evolution of
([R(t)]>%~?) using the energy flux relations in 2d and
3d combined with Eq. (10) and the Kolmogorov scaling
& = 1and & = 2/3. We get, respectively, for 2d and 3d

[zl )-1-5m o

In 3d, where € > 0 and the energy flows to small scales;
growth of this negative moment means that the main con-
tribution comes from converging pairs. In 2d, where € <0
and the energy flows to large scales, diverging pairs domi-
nate, and the moment decays. These relations provide the
Lagrangian consequence of the 4/5 law and the short-time
counterparts to the Richardson law.

The moment (R>~2~¢) thus provides an alternative way
of measuring €, which is valid for short times and so should
be accessible experimentally. Furthermore, the initial dy-
namics of this special moment is irreversible in time,
unlike other moments of the separation where irreversibil-
ity is hidden by the ballistic evolution. At long times, we
expect (R?~¢27%) to decay both in 2d and 3d, since diverg-
ing pairs should dominate the statistics.

We thus find that in the inertial interval of turbulence
(spatially nonsmooth velocity with finite temporal correla-
tions), there are no moments whose first three time deriva-
tives turn into zero; we conclude that the velocity snapshot
completely determines the short-time evolution of the
statistics of the distance between fluid particles.

Velocity-distance correlation functions.—For stationary
statistics, 9,(F(i, Eo)) = 0, so that (5) turns into a continu-
ity equation:

ad

R WF@, Ry)).  (13)

(R0, RO =

The particular case is the Kolmogorov law expressed in a
Lagrangian language: 9,/ (u?) = (du*/dt) = V{u'u*) =
—4€ [11,13]. We can now generalize

(duR"/dty = —4€R™1(1 + b/d). (14)

The initial evolution of the moments depending on the
energy u’ is controlled by €. The exception is as an
effective energy density, {[u(t)]’[R(£)]"%), whose first
derivative is zero and the short-time behavior is dominated
by a time reversible > contribution. More generally,
(du§R?/dty = ¢ RE " Wus™)y  and  (dPu¢R’/dr*) =
cy(b + acy + a)RE(ué*?)/(a + 1), where ¢, =d — k +
&rra T b. One can show that no a, b exist which turn both
derivatives into zero in a nonsmooth case. We thus cannot
build power-law statistical integrals of motion compensat-
ing growth of u by that of R. Consider the even more
general form,

G(ii, R) = ue™R>=m(ii - R)™, (15)

with arbitrary a, b, m. From our short-time perspective, if
(G(1)) doesn’t have all time derivatives equal to zero at the
initial time, it is surely not an integral of motion. Using
stationarity and (13), we express the condition for time
derivatives of (G(¢)) to vanish:
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d"G d"!
= v —_— = . 1
().~ Vugemio)=0 1

The last equality would be satisfied by virtue of (1) if
(u;d"'G/di""'y = constRiR; 4. If b is not a positive
integer, that correlation function for any n contains the
term (uiu"~1*a)RE=nH1 o RETMTE Rl Agsuming  all
terms have the same scaling, we obtain the condition to
satisfy (16) b —n + £,1, = —d. It is satisfied for all n
only for the smooth case £, = n and b + a = —d, which
generalizes (7). We thus found a family of quantities whose
time derivatives are all zero at ¢+ = 0. Conservation follows
from analyticity in ¢, which holds when (15) is an analytic
function of the velocity (which is analytic in f). In a
spatially smooth flow, we thus have an infinite family of
conservation laws, which originates from the same dy-
namical statement as the special case (7).

On the contrary, statistical integrals of motion of the
type (15), that exploit basic symmetries and (1), do not
exist for nonsmooth flows, including those with the
Kolmogorov scaling &, = n/3. A special case of 2d vor-
ticity cascade is close to smooth yet with logarithmic
corrections, which can be shown to prevent conservation
of (15). Note that in the nonsmooth case typical time scales
depend on the distances, so if integrals of motion exist
they must depend on the initial distance. The simplest
such candidates are (u“g,(R/Ry)). For example, if
(u?g>(R/Ry)) is conserved, then (u*(t)g,[R(1)/R,]) =
(u?(0))g,(1) = R?. One can hypothesize that Ry is irrele-
vant at t — oo, then g,(x) « x~¢2 at x — oo, thus linking
the Eulerian scaling exponent to the long-time limit of the

Lagrangian conservation law. However, the power should
be different at the opposite limit: (14) suggests g,(x) —
x4 when x — 1 [for 1d Burgers turbulence, the analog of
(14) exists with d = 1/3]. A full description of such inte-
grals requires deeper insight into the interplay between
dynamics and geometry.
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