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We characterize statistical properties of the flow field in developed turbulence using concepts from

stochastic thermodynamics. On the basis of data from a free air-jet experiment, we demonstrate how the

dynamic fluctuations induced by small-scale intermittency generate analogs of entropy-consuming

trajectories with sufficient weight to make fluctuation theorems observable at the macroscopic scale.

We propose an integral fluctuation theorem for the entropy production associated with the stochastic

evolution of velocity increments along the eddy hierarchy and demonstrate its extreme sensitivity to the

accurate description of the tails of the velocity distributions.
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All processes in nature are bound to produce entropy.
This central dogma of macroscopic thermodynamics got
substantially qualified in the preceding decade by new
insights into the properties of small, strongly fluctuating
systems. If entropy-consuming trajectories occur with ap-
preciable probability, thermodynamic inequalities may be
considerably tightened to assume the form of equalities
[1,2]. The emerging field of stochastic thermodynamics
(for recent reviews, see [3,4]) focuses on the full probabil-
ity distributions of thermodynamic variables like heat,
work, and entropy and establishes thermodynamic rela-
tions for individual fluctuating histories of the systems
under consideration. Most prominent among these rela-
tions are the so-called fluctuation theorems (FTs), quanti-
fying the relative frequency of entropy-consuming as
compared to entropy-producing trajectories. Applications
of these developments concern free-energy estimates of
biopolymers [5,6], the efficiency of nanomachines [7,8],
and the thermodynamic cost of information processing
[9,10], to name a few.

On the experimental side, most investigations have been
done with nanoscopic setups, like in single-molecule ma-
nipulations [11–13], colloidal particle dynamics [14–16],
or harmonic oscillators [16]. For these systems, typical
free-energy differences are of order kBT and the ubiquity
of thermal fluctuations ensures the broad distributions of
work, heat, and entropy, which are indispensable for the
application of fluctuation theorems. Increasing the size of
these systems to macroscopic orders, the importance of
thermal fluctuations fades, entropy-consuming trajectories
become exceedingly rare, and the fluctuation theorems
degenerate to the inequalities known from traditional ther-
modynamics. Besides some investigations in granular
media [17–19], rather few examples of macroscopic sys-
tems have been identified that are amenable to an analysis
using FTs.

Turbulent flow of liquids and gases is a fascinating
phenomenon with many different facets that has been
captivating scientists for centuries. Despite its broad range

of technical relevance, including turbulent drag [20], tur-
bulent mixing [21], atmospheric turbulence with implica-
tions for climatic models [22], and the prospects of wind
energy [23,24], several aspects of turbulent flows are still
not fully understood. In particular, the intricate pattern
of small-scale flow in developed turbulence with its
intermittent change between laminar periods and violent
bursts of activity has eluded a thorough theoretical under-
standing so far.
In the present Letter, we show that the fluctuating flow

field of developed turbulence represents a proper test sys-
tem for stochastic thermodynamics. The dynamic fluctua-
tions of turbulence show up at a macroscopic scale and, at
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FIG. 1 (color online). Distribution pðu; rÞ of velocity incre-
ments u at various scales r (circles) in the turbulent flow of a free
jet experiment [37]. The velocity increments u are given in units
of the standard deviation �1 ¼ 0:54 m=s at infinite scales. Also
shown is the instantaneous stationary distribution pstðu; rÞ de-
fined in (5) (full lines) and Gaussian fits to the experimental data
(dashed lines). The deviation from both the Gaussian approxi-
mation and the stationary distribution increases when approach-
ing smaller scales. For the sake of clarity, the distributions for
various scales are vertically shifted by 103.
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the same time, are strong enough to generate
‘‘nonmainstream’’ trajectories with sufficient frequency
to observe FTs in action. Using data from a free air jet
experiment, we elucidate the nature of the entropy-
consuming trajectories and demonstrate the convergence
of an integrated FT for data sets of rather small size. We
further discuss how to use the FT for the statistical descrip-
tion of the flow field.

Applications of FTs to turbulent flow have been dis-
cussed before. On the experimental side, fluctuations of the
heat flux [25], the injected power [26], and the pressure
[27], as well as the motion of tracer particles [28], were
studied. Numerical investigations concerned fluctuations
of the injected power in the shell model [29,30] and
properties of augmented Navier-Stokes equations in two
dimensions [31]. All these investigations focused on vari-
ants of the steady-state FT [1,32]. The FT we propose in
this Letter is qualitatively different. It is no steady-state FT
but characterizes the nonstationary stochastic evolution of
velocity increments along the eddy hierarchy. It is some-
what similar in spirit to the detailed FT proposed in [33],
which, however, describes the enstrophy cascade in two-
dimensional turbulence.

In a standard setup, isotropic turbulence is generated by
injecting energy into the flow by an external force field at a
large, so-called integral scale L [34,35]. By repeated
breakup of eddies, a self-similar eddy hierarchy forms
which is characteristic for developed turbulence [36]. On
average, energy is transferred along the cascade to smaller
and smaller scales until, due to molecular friction, it is
dissipated in the viscous range. The Taylor scale � marks
the length scale above which the influence of dissipation is
still negligible.

A suitable way to characterize the stationary, homoge-
neous, and isotropic flow field vðx; tÞ in the inertial range
between L and � is via the probability density function
pðu; rÞ of longitudinal velocity increments [35],

uðrÞ :¼ e � ðvðxþ er; tÞ � vðx; tÞÞ: (1)

Here, r denotes the scale at which the velocity difference u
is evaluated, e is a unit vector and due to the average
symmetries of the turbulent flow, the statistical properties
of u only depend on r. Fig. 1 shows histograms of this
distribution using data obtained in a turbulent air jet ex-
periment [37]. In this setup, L ¼ 6:7 cm, � ¼ 6:6 mm, and
the nozzle-based Reynolds number is about 2:7� 104. The
flow velocity vðtÞ is measured a distance of 125 nozzle
diameters away from the nozzle and then converted to a
flow field vðxÞ by use of the Taylor hypothesis. Chopping
vðxÞ into non-overlapping intervals, N ¼ 5� 104 trajecto-
ries uðrÞ are obtained from which the shown histograms are
compiled. As Fig. 1 clearly shows, pðu; rÞ exhibits a
Gaussian form for scales r � L and develops pronounced
non-Gaussian tails towards scales r � �. This effect is
commonly referred to as small-scale intermittency, as

intermittent bursts in vðxÞ cause the boosted occurrence
of large values of u on small scales [38].
An inventive approach to characterize the properties of

the distribution pðu; rÞ in the inertial range is to interpret
uðrÞ as realizations of a Markov process on the eddy
hierarchy with the scale r playing the role of time [39].
The evolution of pðu; rÞ is then described by a master
equation with initial condition at r ¼ L, for which a
Kramers-Moyal expansion [40] may be performed. For a
variety of experimental situations, the Markovian character

of uðrÞ was verified, and the coefficients DðkÞ of the corre-
sponding Kramers-Moyal expansion were determined on
the basis of experimental data [41–44]. Moreover, in the
limit of large Reynolds number, it is possible to system-
atically derive the master equation governing the evolution
of pðu; rÞ from the underlying Navier-Stokes equations of
the fluid flow and to recursively calculate the coefficients

DðkÞ [45,46]. In either way, one finds that drift and diffusion
coefficients, Dð1Þ and Dð2Þ, respectively, have well-defined,
nonzero limits, whereas all higher coefficients in the
Kramers-Moyal expansion vanish asymptotically. We are
thus left with a Fokker-Planck equation (FPE) of the form

�@rpðu; rjuL; LÞ ¼ ½�@uD
ð1Þðu; rÞ

þ @2uD
ð2Þðu; rÞ�pðu; rjuL; LÞ; (2)

ruling the statistics of velocity increments on the eddy
hierarchy of developed turbulence. The minus sign on the
lhs of the FPE indicates that the evolution proceeds from
large to small scales.

The drift and diffusion coefficients, Dð1Þ and Dð2Þ, typi-
cally depend on r and u; for the data shown in Fig. 1 one
obtains, e.g., [37]

Dð1Þðu;rÞ¼�a0r
0:6�a1r

�0:67uþa2u
2�a3r

0:3u3 (3)

Dð2Þðu; rÞ ¼ b0r
0:25 � b1r

0:2uþ b2r
�0:73u2 (4)

with

a0 ¼ 0:0015; a1 ¼ 0:61; a2 ¼ 0:0096; a3 ¼ 0:0023;

b0 ¼ 0:033; b1 ¼ 0:009; b2 ¼ 0:043:

The stochastic dynamics defined by (2) therefore exhibits
characteristics of a driven nonequilibrium system. This is
apparent also from the difference between pðu; rÞ and the
instantaneous stationary distribution of the FPE (2) for
fixed scale r given by

pstðu; rÞ ¼ e�’ðu;rÞ

ZðrÞ ; ZðrÞ ¼
Z

e�’ðu;rÞdu (5)

with the stochastic potential,

’ðu; rÞ ¼ lnDð2Þðu; rÞ �
Z u

�1
Dð1Þðu0; rÞ
Dð2Þðu0; rÞ du

0: (6)

Examples of pstðu; rÞ have been included into Fig. 1.
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In the spirit of stochastic thermodynamics [3], we now
associate with every individual trajectory uðrÞ a total
entropy production,

�Stot½uð�Þ� ¼ �
Z �

L
@ruðrÞ@u’ðuðrÞ; rÞdr� ln

pðu�; �Þ
pðuL; LÞ :

(7)

In the usual thermodynamic setting, the first term on the rhs
of (7) would describe the heat exchange with the reservoir,
whereas the second one gives the entropy change of the
system itself. The total entropy production (7) fulfills the
integral FT [47],

he��Stotiuð�Þ ¼ 1; (8)

where the average is over the different realizations of uðrÞ.
A reliable estimate of the exponential average in (8) on

the basis of a finite sample set is possible only if trajecto-
ries with �Stot½uð�Þ�< 0 occur with sufficient frequency.
We have used subsets of size N of the realizations for uðrÞ
underlying Fig. 1 together with their entropy productions
determined by (7) and calculated the empirical average,

he��StotiN ¼ 1

N

XN
i¼1

e��SðiÞtot ; (9)

corresponding to (8). The results shown in Fig. 2 demon-
strate that convergence to the asymptotic value is rather
fast. This is corroborated by the appreciable weight of
trajectories with negative entropy production in the distri-
bution pð�StotÞ shown in the inset. The macroscopic fluc-
tuating flow fields of developed turbulence therefore share

important features with the thermodynamic variables of
nanoscopic nonequilibrium systems under the influence of
thermal noise. In particular, in both cases the respective
probability distributions are sufficiently broad to allow an
application of the concepts of stochastic thermodynamics.
The convergence of the empirical average (9) to the

theoretical value 1 given by (8) also indicates that the drift
and diffusion coefficients (3) and (4), estimated on the
basis of the experimental data, describe the stochastic
properties of the process uðrÞ rather well. Conversely, by
monitoring (9) during the numerical estimation ofDð1Þ and
Dð2Þ, one has a simple, ‘‘on-the-fly’’ criterion to quantify
the accuracy of this estimation with an emphasis on the
precise modeling of entropy-consuming events. The

method presently used for the verification of Dð1Þ and

Dð2Þ involves the numerical solution of the FPE with the
estimated drift and diffusion coefficients and a comparison
with the underlying experimental trajectories [37], which
is, of course, a much more cumbersome procedure.
It is interesting to elucidate some characteristics of the

entropy-consuming trajectories. To contrast entropy-
consumption with entropy production, we show in Fig. 3
the average of 50 extreme sequences uðrÞ giving rise to
very small and very large values of �Stot respectively.
These averages display the distinct features common to
all individual trajectories of the corresponding class. As
expected, trajectories giving large and small values of
�Stot look rather different from each other. Large entropy
production, as shown in the bottom panel of Fig. 3, is
related to a continuous decrease of u for decreasing r. In
contrast, negative values of �Stot require violent fluctua-
tions at small scales together with a smooth flow at large
scales as shown in the top panel of Fig. 3. Therefore, the
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FIG. 2 (color online). Empirical average hexp��StotiN defined
in (9) for the experimental data of Fig. 1 as a function of the
sample size N. According to the fluctuation theorem (8), the
average has to converge to the horizontal line. The inset depicts
the corresponding distribution of the total entropy production
�Stot as defined by (7).
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FIG. 3 (color online). Typical form of measured velocity
increments uðrÞ (full lines) realizing a very small (top) and a
very large (bottom) entropy production �Stot defined by (7).
The dashed lines show the average part of vðxÞ neighboring
uð�Þ. The Taylor scale � and integral scale L are indicated by
vertical lines.
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same class of fluctuations that causes small-scale intermit-
tency in developed turbulence also ensures the good con-
vergence of the integral FT (8).

This connection becomes also apparent when studying
the deviations from dimensional scaling in developed tur-
bulence. Consider the moments

SnðrÞ ¼
Z

unpðu; rÞdu (10)

of the distribution pðu; rÞ. The self-similar eddy hierarchy
suggests scaling laws for these moments of the form
SnðrÞ / r�n defining the scaling exponents �n. A relation
for these exponents, the so-called K62 scaling, was pro-
posed in 1962 by Kolmogorov and Oboukhov on the basis
of dimensional analysis and some simplifying assumptions
about the stochastic energy transfer between scales [48,49],

�n ¼ n

3
��

nðn� 3Þ
18

: (11)

The intermittency factor � describes deviations from pure
dimensional (K41 [50]) scaling. It is an experimental fit
factor with typical values of about 0.25 [35]. For the data of
Fig. 1, � � 0:227.

Choosing

Dð1Þðu; rÞ ¼ � 3þ�

9r
u; Dð2Þðu; rÞ ¼ �

18r
u2; (12)

the stochastic dynamics (2) reproduces the K62 scaling
(11) for the moments (10) for any initial distribution
pðuL; LÞ [37,42]. Note that this is already the most general
case: In order to find a scaling law SnðrÞ / r�n from the

Fokker-Planck dynamics (2), one must have Dð1Þ � u=r

and Dð2Þ � u2=r [51].
These dependencies are, however, also special with

respect to the FT (8). Given (12), we may transform to
logarithmic ‘‘time’’ logL=r to end up with a FPE describ-
ing a stationary process without external driving. The FT
then merely describes the relaxation process from an initial
nonequilibrium distribution to the stationary state pst ¼
�ðuÞ where all SnðrÞ ! 0 [39,52]. Corrections to K62
scaling, therefore, correspond to a nontrivial ‘‘time’’ de-
pendence of drift and diffusion coefficients in the FPE and
hence express genuine nonequilibrium dynamics along the
eddy hierarchy.

To highlight the sensitivity of the FT to small-scale
intermittency, we specify (8) to the drift and diffusion
coefficients (12) of K62 scaling. Using (6) and (7), we find�

u�rprðurÞ
u�LpLðuLÞ

�
¼ 1; (13)

with � ¼ 6þ4�
� � 28. This large value of � is consistent

with the qualitative picture discussed above: Trajectories
corresponding to large values of �Stot have uL > ur,
whereas those with negative �Stot feature uL < ur. Using
data from numerical simulations of the Langevin equation

corresponding to (12), we indeed find a smooth conver-
gence of (13) for sample sizes of 104 or larger.
The crucial point, however, is that (13) fails dramatically

for realistic turbulent flows. Using again the experimental
data of Fig. 1, the average in (13) results into about 1070

instead of 1. The value 1 is only approached if small-scale
fluctuations occur with the frequency characteristic for the
K62 model. The much more frequent and stronger fluctua-
tions of a realistic turbulent flow, however, cause the rapid
divergence of (13), which we explain by the well- known
fact that K62 underestimates the frequency of large fluc-
tuations on small scales (i.e., the scaling (11) is only good
for n & 10 [35,53]). Hence, the corresponding failure of
K62 to accurately describe the tails of pðu; rÞ is most
strikingly demonstrated by the breakdown of (13).
In conclusion, we have shown that the violent small-

scale fluctuations in turbulent flows make developed tur-
bulence an interesting model system for stochastic
thermodynamics. We have proposed an integral fluctuation
theorem that characterizes the stochastic evolution of ve-
locity increments along the eddy hierarchy, which is
extremely sensitive to the precise modeling of small-scale
intermittency. Moreover, it may be used as a simple ‘‘sum
rule’’ to quantify the accuracy of parameter estimation
from experimental data drawn from turbulent flows.
Since other models of developed turbulence, such as those
yielding scaling laws different from K62 [54,55], propa-
gator methods [56], or field-theoretic approaches [45,57],
also correspond to a Markovian dynamics of velocity
increments on the eddy hierarchy [46,51,58], it should be
interesting to apply our analysis to these approaches.
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