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We show that, contrary to the common wisdom, surface plasmon poles are not involved in the imaging

process in leakage radiation microscopy. Identifying the leakage radiation modes directly from a

transverse magnetic potential leads us to reconsider the surface plasmon field and unfold the non-

plasmonic contribution to the image formation. While both contributions interfere in the imaging process,

our analysis reveals that the reassessed plasmonic field embodies a pole mathematically similar to the

usual surface plasmon pole. This removes a long-standing ambiguity associated with plasmonic signals in

leakage radiation microscopy.
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Surface plasmon (SP) optics has become a mature and
extended field of research, ranging from the development
of new optical nanodevices and nanoantennas to the
renewal of integrated quantum optics [1,2]. In this context,
surface plasmon imaging techniques are of critical impor-
tance to the researcher, among which leakage radiation
microscopy (LRM) is now emerging as a powerful tool
[3,4]. As a far-field optical method, LRM is used for
analyzing SP modes both in direct and Fourier (momen-
tum) spaces and it has been successfully implemented in
various plasmonic systems, both at the classical and quan-
tum levels [5–10]. Yet, there is still no satisfying theoreti-
cal definition of the SP field in an imaging context. Instead,
recent reference work on leaky waves have focused on
semi-infinite air-metal interfaces, a configuration not rele-
vant to LRM [11–14]. This has fuelled recent debates
concerning the precise relation between experimentally
recorded images and SP modes [15–17].

In this Letter, we instead propose a novel approach to the
problem of leaky waves that provides a full analytical theory
of the coherent SP imaging process in the case of a pointlike
radiating electric dipole located in air above a thin metal
film. This leads us to a new definition of the SP field as a
Fano-type interfering component of the imaged radiation.
We derive analytical expressions for the far-field radiation
that meets all the necessary conditions prescribed to the
leakage field symmetries [18]. Importantly, we show that
our approach naturally makes the SP field free from the long
standing ambiguities of the historical Zenneck and
Sommerfeld solutions [19,20] and removes the field discon-
tinuity at the leakage radiation (LR) angle, which was, until
now, problematic. Doing so, we also identify the contribu-
tion of a lateral wave thus far unnoticed that we associate
with a new type of Goos-Hänchen effect in transmission.

In the geometry considered in Fig. 1, a harmonically
radiating pointlike dipole �e�i!t drives a SP wave that

leaks through the film in medium 3 and then propagates in
the matching oil of the high numerical aperture (NA)
immersion objective required for LRM. Because of the
specific dispersion relation of SP waves, LR is emitted at

an angle #LR>#c¼arcsin½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið"1="3Þ
p � defining a radiation

FIG. 1 (color online). (a) Sketch of the leakage radiation
microscope: an electric dipole embedded in medium 1 with
permittivity "1 ¼ 1 (air) is located at [x ¼ 0, y ¼ 0, z ¼ �h]
from the surface z ¼ 0 of a thin (thickness d) metal film of
permittivity "2 deposited on a glass substrate of permittivity
"3 ¼ n2 > "1 (see [26]). (b) Integration path � in the [�00 ¼
Imð�Þ, �0 ¼ Reð�Þ] complex plane. BC is the branch cut and SP
the position of the plasmonic poles (symmetric leaky) in the two
Imð�ÞReð�Þ> 0 quadrants. The steepest-descent path SDP is
shown in the Imðk1Þ> 0 first Rþ Riemann sheet (continuous
line) and in the Imðk1Þ< 0 second Riemann sheet (dot-dashed
line). The variations of Reðk1Þ are displayed with values given in
the color bar.
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cone in the forbidden-light sector shown in Fig. 1(a), which
intersects the reference sphere � of the LRM objective.

Because of the planar symmetry of the problem, the
radiated field in medium 3 can be represented in terms of
transverse magnetic (TM) and electric (TE) scalar poten-
tials� with ½�2 þ k20"3��TM;TE ¼ 0 where k0 ¼ !=c. For
simplicity, the case of a dipole normal to the film� ¼ �?ẑ
(i.e., �TE ¼ 0) is only discussed here. A general and
detailed calculation is given in [21]. Using boundary con-
ditions at the different interfaces, we expand the potential

at [x ¼ ðx; yÞ, z] as �TMðx;zÞ¼
Rþ1
�1kdkAðk;zÞHðþÞ

0 ðkjxjÞ
with Aðk;zÞ¼ði�?=8�k1Þ ~TTM

13 ðkÞeik1heik3z and HðþÞ
0 ðkjxjÞ

is the zeroth order radiating-like Hankel function (evolving

asymptotically as eþikjxj=
ffiffiffiffiffiffiffiffiffi
kjxjp

for large jxj). The Fresnel
coefficient ~TTM

13 ðkÞ gives the transmission through the film
of TM radiation with a wave vector jkj ¼ k. Stability

imposes complex square roots kjðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20"j � k2

q
(j ¼ 1

or 3) with Im½kj� � 0.

The precise computation of such a Sommerfeld-like
integral is extraordinarily involved due to the presence of
two branch cuts associated with k1;3ðkÞ and several SP

poles in the complex k plane [22]. To simplify at most
the problem, we chose an alternative parametrization of
the integral through the complex variable � defining

k ¼ k0n sin�. This leaves only one branch cut (BC) k1 ¼
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"1 � "3sin

2�
p

with a branch point � ¼ #c. We impose
Im½k1� � 0 in the whole complex � plane as the choice of
the Riemann sheet Rþ. The integral becomes

�TMðx; zÞ ¼
Z
�
d�Fð�Þeik0nr cosð��#Þ; (1)

where Fð�Þ ¼ Aðk; dÞkk3HðþÞ
0 ðkjxjÞe�ikjxj with the polar

coordinates jxj ¼ r sin#, z ¼ dþ r cos# leading to
ðz� dÞ cos�þ jxj sin� ¼ r cosð�� #Þ. The initial con-
tour � corresponding to the condition sin� real is repre-
sented on Fig. 1(b).

To evaluate Eq. (1), we deform the contour � in order to
include the steepest-descent path (SDP) determined by
Im½f#ð�Þ� ¼ 1 with f#ð�Þ ¼ i cosð�� #Þ. The SDP
crosses � at the saddle point �0 ¼ # defined by
dfð�Þ=d� ¼ 0. The SDP contribution �SDP to the field is
calculated using the steepest-descent method discussed
below. Two additional contributions �p and �BC associ-

ated, respectively, with the SP poles and the BC have to be
accounted for when deforming the contour. The most
relevant part here is a single SP pole kp ¼ k0n sin�p

resulting from the divergency of ~TTM
13 ðkÞ ¼

ðN13ðkÞ=D13ðkÞÞ when D13ðkpÞ ¼ 0. Such a transcendental

equation is known to possess four kinds of SP modes
corresponding to leaky waves and bound modes in medium
1 or 3 [4,18]. Importantly on the Rþ sheet, only the leaky
mode in medium 3 (labeled symmetric leaky in [18]) is
possibly encircled during the contour integration [see

Fig. 1(b)] depending on whether �0 >#LR or not. This
implies that the residue contribution to �TM associated
with the SP pole reads

�p ¼ 2�iRes½Fð�pÞ�eik0nr cosð�p�#Þ�ð# � #LRÞ; (2)

where �ðxÞ is the Heaviside unit-step function and where
the LR angle is precisely defined by Im½f#LR

ð�pÞ� ¼ 1,

i.e., #LR¼Re½�p�þarccosð1=coshIm½�p�Þ’Re½�p�. An

intensity plot of this contribution is displayed on Fig. 2(a)
which clearly shows the conical wave front structure emit-
ted at the angle arctanðRe½kp�=Re½k3p�Þ ¼ Re½�p� ’ #LR.

Remarkably, this conical �ð# � #LRÞ wave front removes
the power flow divergence in the z > 0 direction due to the
exponentially growing field associated with�p in medium

3 [18] and the spatial singularity along the z axis surviving
at all distances away from the source induced by the
Hankel function [21].

Beyond #LR, �p / eik3pzHðþÞ
0 ðkpjxjÞ [where k3p :¼

k3ðkpÞ] in direct relation to the original derivation by

Zenneck and Sommerfeld of surface waves [19,20]. It
corresponds to what modern literature coined as the leaky
SP mode [4,18], belonging to the general family of leaky
waves discussed for years in the radio antenna community
[23]. It is important to realize, however, that this contribu-
tion is actually nonphysical, due to the field discontinuity
at #LR introduced by the �ð# � #LRÞ prefactor. It thus
appears necessary to find a genuinely physical definition
of a leaky SP wave. We now show that this is only possible
by including in our discussion both �SDP and �BC

contributions.
The central result of the Letter is that the LRM imaging

process is essentially determined by �SDP which is eval-
uated as [21]

�SDP ¼ eik0nr
X

m2even

�ðmþ1
2 Þ

m!ðk0nrÞðmþ1=2Þ
dm

d�m
Gð0Þ; (3)

FIG. 2 (color online). Intensity contour plots corresponding to
the contributions (a) �p and (b) �SDP, with their coherent

superposition displayed in (c). To remove the asymptotic diver-
gence at infinity we calculated jxjðRe½E�Þ2 in (a), while we
calculated instead r2ðRe½E�Þ2 in (b),(c).
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with the variable � ¼ ei�=4
ffiffiffi
2

p
sin½ð�� #Þ=2� and the

function Gð�Þ ¼ Fð�Þðd�=d�Þ in the vicinity of the saddle
point � ¼ 0 (i.e., �0 ¼ #). A second contribution must be
accounted for when # > #c because in this case, the close
integration path has to surround the branch cut in the Rþ
sheet [see Fig. 1(b)]. Following [24], this contribution can
be given as a series expansion

�BC�ei�’�ð#�#cÞ
Xþ1

m¼1

�mðr;#cÞ
½k0nrsinð#�#cÞ�1þm=2

; (4)

where the coefficients �mðr; #cÞ can be explicitly com-
puted and �’ ¼ k0nr cosð# � #cÞ is interpreted as the
phase accumulated by a wave creeping along the metal
film (at velocity c) and reemitted at the critical angle #c (at
velocity c=n) [21]. Such a wave is associated in our case to
a Goos-Hänchen—like effect in transmission [24]. This
contribution is not specific to the LRM geometry but it
has never been discussed, whereas the m ¼ 1 far-field
dominant term in Eq. (4) evolves as �1=r2, i.e., as a
Norton wave defined on the same 1=r2 order from
�SDP [25].

These terms, however, can be neglected in the far field
(r � 2�=k0) where all that survives is the dominant 1=r
term in the power expansion of �SDP;m¼0 in Eq. (3). The

radiated far field is thus

�SDP;m¼0ðx; zÞ ’ 2�k0n cos#

ir
eik0nr ~�TM½k; d�; (5)

where ~�TM½k; d� ¼ Aðk; dÞ=� is the bidimensional
Fourier transform of �TMðx; zÞ calculated at z ¼ d for
the in-plane wave vector k ¼ k0n sin#x=jxj. This expres-
sion shows in Fig. 2(b) a conical structure peaked on #LR

which should be compared with the one obtained from�p

alone in Fig. 2(a). The comparison with Fig. 2(c) combin-
ing both contributions coherently clearly expresses a cen-
tral result for LRM:�SDP;m¼0 strongly dominates not only

over �BC, as discussed above, but also over �p, consis-

tently with the finite value of the SP propagation length
Lp ¼ ð2 Im½kp�Þ�1 that overdamps the exponential tail of

�p for angles # � #LR.

From an imaging perspective, the radiating field given
by Eq. (5) is detected in the objective back-focal plane �
sketched in Fig. 1 (see [26]). We plot ITM;�½k� in Fig. 3 for
a dipole either perpendicular or parallel to the interface
[28]. We point out that these intensity maps are in quanti-
tative agreement with experiments [4,8,10] and clearly
reveal a bidimensional ring with radius kr � Re½kp� and
width �k � 2 Im½kp�.

As a fundamental paradox, this ring is nowadays asso-
ciated with the detection of the SP mode [4,29,30] despite
the fact that it is �SDP and certainly not �p which is

involved in the measurement process. This paradox stems

from Gð�Þ being singular (thus�SDP too) at the SP pole �p
(i.e., �p), with a polar contribution �

pole
SDP sharing a closed

mathematical relation with �p. This generated an histori-

cal confusion regarding the actual role of SP modes in the
Sommerfeld integral, an issue debated since the work of
Zenneck and Sommerfeld [11,19,20].
In order to remove the ambiguity, we reconsider the very

definition of what the SP field is, by going back to Eq. (3)

and observing that ~�TM½k; d� is an explicit function of k ¼
k0n sin# with # 2 ½0; �=2�. This function can be easily
continued over the complex k plane analytically. This
function presents some isolated poles such as kp and

�kp which allow us to decompose ~�TM½k; d� into a regu-

lar and polar part. It is this polar part

~�pole
TM ½k; d� ¼ �p

1ffiffiffi
k

p
�

1

k� kp
þ 1

iðkþ kpÞ
�
; (6)

with �p ¼ ði�?=8�Þðkp=k1pÞððeik1pheik3pdÞ=ð�
ffiffiffiffiffi
kp

p ÞÞ�
ððN13ðkpÞÞ=ð@D13ðkpÞ=@kpÞÞ that we will define as the SP

field ~�SP½k; d� :¼ ~�pole
TM ½k; d� (see [21] for the general

case). To justify this definition, we point out that

from Eq. (6) we deduce a SP field �SPðx; zÞ ¼R
d2k ~�pole

TM ½k; d�eik�xeik3ðz�dÞ which, in analogy with

FIG. 3 (color online). Fourier space images recorded in the
back-focal plane of the microscope objective for a dipole radiating
through a thin metal film, when the dipole is perpendicular (a) or
parallel (b) to the metal film. In both cases, the calculated acces-
sible intensities in the k ¼ ½kx; ky� plane ITM;TE are associated

with ~�TM;TE and ISP with the SP contribution ~�SP. The non-

plasmonic term ISP is defined as a residual / k30k3k
2"3j ~�TM �

~�SPj2 (a) and /k30k3k
2"3j ~�TM� ~�SPj2þITE (b).
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Eq. (1), is alternatively defined by a contour integral over �
along �,

�SPðx; zÞ ¼
Z
�
d�FSPð�Þeik0nr cosð��#Þ; (7)

where FSPð�Þ ¼ ~�
pole
TM ½k; d�kk3HðþÞ

0 ðkjxjÞe�ikjxj. The

remarkable fact about Eq. (7) is that it can be evaluated
by the procedures used for Eq. (1) without any branch cut,
and split into one contribution from the residue and another
from the SDP:

�SPðx;zÞ¼2�iRes½FSPð�pÞ�eik0nrcosð�p�#Þ�ð#�#LRÞ

þeik0nr
X

m2even

�ðmþ1
2 Þ

m!ðk0nrÞðmþ1=2Þ
dm

d�m
GSPð0Þ; (8)

with GSPð�Þ ¼ FSPð�Þðd�=d�Þ. Importantly, the residue
term in Eq. (8) is identical to �p given that

Res½FSPð�pÞ� ¼ Res½Fð�pÞ�.
In the far field, them ¼ 0 term in the sum dominates and

we have �SPðx; zÞ ’ ð2�k0n cos#=irÞeik0nr ~�SP½k; d�. In
Fig. 3 we compare this expression for �SP to Eq. (5) by
computing the intensity in the back-focal plane. In the case
of a vertical dipole—Fig. 3(a)—the SP term ISP;�½k�,
proportional to j ~�SP½k; d�j2, is quasi-identical to

ITM;�½k�. We define the nonplasmonic signal by ISP /
j ~�TM½k; d� � ~�SP½k; d�j2. In the case of a horizontal
dipole—Fig. 3(b)—there is also an additional TE contri-

bution ITE;�½k� / j ~�TE½k; d�j2 to ISP. The intensity dip

observed for such a horizontal dipole is attributed to a
Fano-type interference effect in the k space between the
peaked SP contribution and the broad nonplasmonic signal
made explicit by our analysis [31,32].

In a last step, we calculate direct space images through a
microscope ocular [see Fig. 1(a)] associated with SP
propagation on the metal film by an inverse Fourier trans-
form of the field signal in the � plane, taking into account
the finite angular aperture of the objective [21]. We com-
pare in Figs. 4(a) and 4(b) the images calculated from
Eqs. (5) and (8), respectively, for a vertical and a horizontal
dipole. Signal differences are more important for a hori-
zontal dipole where TE and TM fields interfere, and
decrease for distances larger than 2�=k0. We point out
that the pure SP field at a point x0 of the image plane is
given by a simple expression

ESPðx0Þ /
Z
jkj	k0NA

d2k
ffiffiffiffiffi
k3

p
k ~�SP½k; d�eiðk�x0=MÞ

¼ �
Z

d2xDSP;jjðx; dÞ�
�
xþ x0

M

�� ffiffiffiffiffiffiffi
k3p

q
; (9)

where DSP;kðx; dÞ ¼ ð@2=@x@zÞ�SPðx; dÞ is the in-plane

component of the SP displacement field along the interface
z ¼ d and �ðuÞ � ðk0NA=2�jujÞJ1ðk0NAjujÞ is the (sca-
lar) point-spread function of the microscope objective.

Taking a large microscope magnification M¼nf0=f
1
(with f, f0 being, respectively, the objective and ocular
focal lengths) enables us to analyze the recorded images
simply using the paraxial-like Eq. (9), despite that leaky
waves are emitted in a nonparaxial regime at #LR.

Additionally, since ~�SP½k; d�j defines a sharp ringlike
distribution, we can approximately write ESPðx0Þ /
DSP;kð�x0=M; dÞ for large jx0j=M. Therefore, as shown

in Fig. 4, the difference between the real image and the
SP field vanishes asymptotically when jx0j increases.
Finally, this analysis shows that only in-plane components
of the SP field participate to the image, therefore resolving
definitively the current controversy [15–17].
To conclude, we have removed the long-standing ambi-

guity associated with the very definition of a SP mode as
probed in LRM through a revision of the SP field. We have
shown how this field interferes, in a Fano-type way, with a
broad nonplasmonic radiative signal in the LR imaging
process. We expect our findings to have an important
impact in the ever-growing field of plasmonics in its differ-
ent variants: classical to quantum through molecular to
nonlinear plasmonics.
This work was supported by Agence Nationale de la

Recherche (ANR), France, through the PLASTIPS project
and by the French program Investissement d’Avenir
(Equipex Union).

FIG. 4 (color online). Direct space images associated with a
pointlike dipole radiating through the metal film and recorded in
the back-focal plane of the microscope ocular. (a) Vertical
dipole, (b) horizontal dipole (including in this case the additional
TE contribution). The red curves correspond to the total signal
computed from Eqs. (5) and (9) and the blue ones to the mere SP
signal, i.e., Eqs. (8) and (9).
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