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The laser excitation of Rydberg atoms in ultracold gases is often described assuming that the atomic

motion is frozen during the excitation time. We show that this frozen gas approximation can break down

for atoms that are held in optical lattices or microtraps. In particular, we show that the excitation dynamics

is in general strongly affected by mechanical forces among the Rydberg atoms as well as the spread of the

atomic wave packet in the confining potential. This causes decoherence in the excitation dynamics—

resulting in a dissipative blockade effect—that renders the Rydberg excitation inefficient even in the

antiblockade regime. For a strongly off-resonant laser excitation—usually considered in the context of

Rydberg dressing—these motional effects compromise the applicability of the Born-Oppenheimer

approximation. In particular, our results indicate that they can also lead to decoherence in the dressing

regime.
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Ultracold laser-driven Rydberg gases are a versatile
platform to study the coherent quantum dynamics in
strongly interacting many-body systems. One reason that
makes these systems so appealing is the fact that the
thermal energy is so low that the atoms can be considered
to be frozen in place on the time scale of laser excitation
[1,2]. This absence of thermal atomic motion entails that
the dynamics of ultracold Rydberg gases is entirely deter-
mined by the competition of the coherent laser-excitation
process and the strong interaction between the highly
excited atoms. This interplay results in an intricate and
highly correlated excitation dynamics—its most prominent
manifestation being the dipole blockade: due to the strong
interactions between Rydberg states, only a single atom
can be laser excited within a certain exclusion volume,
which in turn gives rise to an enhancement of the laser
coupling to the emerging many-body state [3,4]. Both the
dipole blockade as well as the enhanced laser coupling are
at the heart of possible applications of ultracold Rydberg
gases in quantum information science [5], the simulation of
quantum spin models [6–12], and the creation of highly
nonlinear and nonlocal optical media [13–17].

On a sufficiently long time scale, dispersive forces
among Rydberg atoms do eventually lead to atomic motion.
However, this time scale is typically about 1 or 2 orders of
magnitude larger than the excitation pulse duration. Because
of this mismatch, an adiabatic approach is often used where
one considers the laser excitation in the frozen gas limit and
treats the atomic motion separately within a molecular dy-
namics framework [18–20]. A similar route is also followed
in the theoretical description of Rydberg dressing protocols
[21–27], where a strongly off-resonant laser coupling is used
to admix a very small fraction of the Rydberg wave function
to the atomic ground state. Here, one conventionally applies
a Born-Oppenheimer approximation, which consists of first

determining effective potentials emerging from the off-
resonant laser coupling for a fixed atomic position and then
solving for the motional dynamics of the Rydberg dressed
system.
In this work, we show that for atoms which are trapped

in optical lattices or microtraps the interplay between
electronic and motional dynamics can already be important
on typical time scales of resonant Rydberg excitation.
To this end, we will investigate the quantum dynamics of
a one-dimensional model of the laser excitation of two
atoms, each trapped in a separate potential well. We will
show that the excitation dynamics changes its character
from fully coherent to dissipative when the distance
between the atoms is decreased. The dissipative dynamics
emerges when the mechanical force between the Rydberg
atoms is so strong that the adiabatic approximation breaks
down. This is accompanied with a significant slowing
down of the excitation time scale, leading to a dissipative
blockade effect, where the laser excitation of a Rydberg
atom pair becomes inefficient even in the antiblockade
configuration. Moreover, our findings indicate that this
dissipation can also affect the dynamics of ground state
atoms which are weakly dressed with a Rydberg state. In
particular, we will argue that the concept of an effective
potential between the Rydberg dressed atoms can become
insufficient to describe the dynamics of the system. Our
results have implications on current and projected Rydberg
experiments in optical lattices [28,29] and microtrap
setups [30–32].
In order to develop an understanding of the effect of

atomic motion on the excitation process, we consider a
model describing the laser excitation of a pair of atoms in
one spatial dimension (cf. Fig. 1). The electronic structure
of each atom is modeled by two levels: the electronic ground
state jgi and an highly excited state jei. These states are
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coupled by a laser field which is detuned by � from the
atomic transition, and we parametrize the coupling strength
by the Rabi frequency�0. We assume that two ground state
atoms are initially prepared at a distance r0, each in the
lowest motional states of separate harmonic traps [see the
inset of Fig. 1(a)]. This reflects the situation that is encoun-
tered in the case of atoms in a deep optical lattice or cooled
to the motional ground state of microtraps [33,34]. In this
case, the spatial wave function of each atom is a Gaussian of
width�. For r0 � �, the wave function describing the state
of the relative motion of the atom pair is also a Gaussian

�ðr; r0Þ ¼ ð2�Þ�1=4�r�1=2 exp½�ðr � r0Þ2=ð4�r2Þ� of

width �r ¼ ffiffiffi
2

p
�.

Antiblockade configuration.—Our first goal is to study
the dynamics of the direct laser excitation of a pair of
Rydberg atoms as depicted in Fig. 1(a). To achieve this,
the laser frequency needs to be chosen such that the anti-
blockade condition �ðr0Þ � 2�þ Vðr0Þ ¼ 0 is met
[35,36], where VðrÞ denotes the interaction potential of
the Rydberg atoms. If jVðr0Þj is much larger than the Rabi
frequency �0 of the atomic transition, the antiblockade

condition also entails j�j � �0. In this regime, the pair
states with only one Rydberg excitation can be adiabati-
cally eliminated and the Rabi frequency of the transition
between the pair states jggi and jeei having zero and two
Rydberg excitations, respectively, is � ¼ �2

0=j�j. These
considerations, however, do not account for the spatial
uncertainty of the initial pair state caused by the zero-point
motion of the ground state atoms in their potential wells.
Since the antiblockade condition is strictly valid only for
r ¼ r0, an uncertainty �r in the atomic separation will
affect the laser excitation of the atom pair. In order to
assess the consequences of this, we first investigate the
dynamics of our model by solving it numerically.
The Hamiltonian of our system can be divided into a

part describing the atomic motion and an electronic
part accounting for the laser excitation H ¼ Hmot þHel

with (@ ¼ 1)

Hmot ¼ � 1

2m
r2

r þUðrÞjggihggj þ VðrÞjeeiheej; (1)

Hel ¼ ��ðrÞjeeiheej þ�

2
ðjggiheej þ H:c:Þ: (2)

Here, m denotes the reduced mass of the atom pair and
UðrÞ ¼ m!2

t ðr� r0Þ2=2 the harmonic trapping potential
of the ground state atom pair with trapping frequency !t.
For simplicity, we assume that the Rydberg atoms do not
feel any external potential. In the following, we will focus
on time scales that are much shorter than the radiative
lifetime of the Rydberg atoms.
Figures 1(b) and 1(c) show the numerically obtained

[37] survival probability pðtÞ ¼ jhGje�iHtjGij2 of the ini-
tial state jGi ¼ jggi � �ðr; r0Þ as a function of time for
large and small initial separations r0 of the atoms, respec-
tively. Evidently, the dynamics in these two regimes has a
strikingly different character. While for a large separation
[shown in Fig. 1(b)] the initial state gets depopulated
quickly and coherently, Fig. 1(c) displays an exponential
decay of pðtÞ. The major difference of these two regimes
is the variation of the interaction potential VðrÞ over the
spread �r of the relative wave function. This implies that
the laser actually does not just couple two discrete elec-
tronic states (jggi $ jeei) but instead the discrete state jGi
and a continuum of states jEi ¼ jeei ��ðr; EÞ of energy E
within an energy window�jFj�r. Here, F¼�@rVðrÞjr¼r0

is the force between the Rydberg atoms at distance r0. For a
weak force, the laser coupling is essentially constant over
�r and only continuum states within a very small energy
window are involved in the excitation dynamics. In the
case of a strong force, however, VðrÞ varies significantly
over �r so that the laser coupling is smeared out over a
large energy interval.
In order to obtain an analytical understanding of the

excitation dynamics, we employ the framework of Fano
theory [38,39]. We will assume in the following that

FIG. 1 (color online). (a) Antiblockade configuration. Two
atoms in their electronic ground state are prepared at a distance
r0 and subsequently resonantly photoexcited to a Rydberg pair
state with Rabi frequency �. Each atom is initially assumed to
be in the motional ground state of a harmonic potential (inset).
The laser couples the corresponding wave function for the
relative coordinate (bottom wave function) to a continuum of
unbound Rydberg pair states (upper wave function). The overlap
of these wave functions determines the energy-dependent laser
coupling WðEÞ, which is shown for two different values of the
initial separation r0. For our analytical calculations, we linearize
the interaction potential around r ¼ r0 (dashed line). The nu-
merically obtained time evolution of the survival probability pðtÞ
of the initial state is shown for the cases of (b) large and (c) small
initial separations r0 of the atoms, taking into account the full
potential VðrÞ ¼ C6=r

6 for the Rydberg 65S state of rubidium
atoms with C6 � 2�� 370 GHz 	�m6. The trapping potential
is !t ¼ 2�� 13:4 kHz, yielding �r � 133 nm. The Rabi fre-
quency is set to be �=!t ¼ 50. The initial separation is
r0=�r ¼ 72 in (b) and r0=�r ¼ 30 in (c). The time interval
shown corresponds to 0:96 �s.
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the oscillator ground state is energetically well isolated
from higher oscillator levels [40]. In this regime, the
Hamiltonian of our model takes on the form H ¼
�ðr0ÞjGihGj þ R

dEEjEihEj þ R
dEWðEÞðjEihGj þH:c:Þ.

The energy-dependent coupling between the discrete state
and the continuum, denoted by WðEÞ, is proportional to
the spatial overlap between�ðr; r0Þwith the continuum state
�ðr; EÞ and given byWðEÞ ¼ ð�=2ÞR1

0 dr�ðr; r0Þ�ðr; EÞ.
The eigenstates ofH can be expressed as j!i ¼ �ð!ÞjGi þR1
�1 dE�ð!;EÞjEiwith coefficients�ð!Þ and�ð!;EÞ that

have to be determined self-consistently [39]. Choosing the
initial state to be jGi, the probability to remain in it at time t
then is pðtÞ ¼ jR1

�1 d!j�ð!Þj2e�i!tj2. The dynamics of

the system is therefore encoded in the Fourier transform of
the spectral function j�ð!Þj2 ¼ W2ð!Þ=f½!� �ðr0Þ �
	ð!Þ�2 þ �2W4ð!Þg, with level-shift function 	ð!Þ ¼
P

R1
�1 dEW2ðEÞ=ð!� EÞ, where P denotes the principal

value integral. The spectral function is normalized such thatR1
�1 d!j�ð!Þj2 ¼ 1.
To determine the spectral function analytically, we make

two approximations. (i) We linearize the interaction poten-
tial around r0; i.e., we approximateVðrÞ�Vðr0ÞþFðr�r0Þ.
The continuum states �ðr; EÞ are then the eigenstates of a

particle in a linear potential �ðr; EÞ ¼ N �1=2�f�½ðr�
r0Þ þ E=F�=l0g, where�ðxÞ denotes theAiry function [41].
The constantN ¼ �jFj1=3=ð2mÞ2 is chosen such that these
eigenfunctions are normalized to a � function in energy and

l0 ¼ ½1=ð2mjFjÞ�1=3. (ii) We consider the regime where
�r=l0 � 1. Within these approximations, the coupling

acquires a simple form WðEÞ ¼ �=2�1=4�E1=2�
expð�E2=2�E2Þ, with energy width �E ¼ ffiffiffi

2
p

�rjFj.
In this Gaussian coupling regime, the level shift
function can also be expressed analytically 	ð!Þ ¼
ð�2=2�EÞDð!=�EÞ, where DðxÞ ¼ e�x2

R
x
0 dye

y2 is the

Dawson function.
The spectral function j�ð!Þj2 in the antiblockade con-

figuration [�ðr0Þ ¼ 0] is shown in Fig. 2(a) as a function
of the initial distance of the atomic pair for �=!t ¼ 1.
It displays a transition from a single peak to a double peak

structure at a critical distanceRc ¼ 1:363½Vð�rÞ=�Þ�1=7�r
assuming a van der Waals interaction VðrÞ ¼ C6=r

6

between the Rydberg atoms. In this transition region, the
spectral function is broad, while, for small or large r0, i.e.,
strong or weak force, its peaks are very narrow. For
r0=�r � 1, the peaks are located at ! ¼ 
�=2. This is
the result onewould obtain for the antiblockade irrespective
of the atomic separation if one completely neglected
the variation of the interaction potential over the spatial
width of the initial wave function. In this case, which
corresponds to Fig. 1(b), the spectral function is j�ð!Þj2 ¼
½�ð!þ�=2Þ þ �ð!��=2Þ�=2. It has two � peaks at the
eigenenergies of the electronic Hamiltonian (2) which are
the dressed energies of the fully coherent system [depicted
also as dashed lines in Fig. 2(a)]. The change of the spectral
function with the atom separation for finite �r therefore

clearly shows that motional effects can have a significant
effect on the excitation dynamics when the force between
Rydberg atoms is strong.
To study this further, we focus on the regime, where

r0 � Rc. Here, the coupling WðEÞ is spread over a very
large energy interval �E, such that it can be considered
constant as a first approximation. The spectral function in
this regime acquires a Breit-Wigner form

j�ð!Þj2 ¼ 1

�

�=2

ð�=2Þ2 þ f!��ðr0Þ � 	½�ðr0Þ�g2
; (3)

i.e., the survival probability of the initial state decays
exponentially pðtÞ ¼ expð��tÞ, as shown in Fig. 1(c)
with rate

� ¼
ffiffiffiffi
�

p
2

�2

�E
exp

�
��2ðr0Þ

�E2

�
: (4)

Let us compare these predictions with results obtained
by numerically solving our model and first focus on the
regime, where the assumption of an energetically well
isolated initial state is well met. Figure 2(b) shows a

FIG. 2 (color online). (a) Dependence of the spectral function
j�ð!Þj2 on the initial separation r0 of the atom wave packets for
�ðr0Þ ¼ 0 (see Fig. 1) and �=!t ¼ 1. The dashed lines indicate
the positions of the eigenstates of the model when motional
effects are not taken into account. The distance Rc, where the
spectrum changes from a single to a double peak structure, is
indicated by the vertical dotted line. (b), (c) Decay rate in the
strong force regime as a function of the initial atom separation
for (b) �=!t ¼ 1 and (c) �=!t ¼ 50. These panels include a
comparison of the numerical solution of the model (symbols)
and the analytical prediction obtained with Fano theory (solid
line). (d) Decay rate in the strong force regime as a function of
�ðr0Þ for two different values of the initial atomic separation and
�=!t ¼ 1. The symbols and solid lines are the numerical
solution and the predictions of Fano theory, respectively.
Numerical parameters that are not explicitly indicated in the
panels are those of Fig. 1.
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comparison of � with the decay constant extracted from
fully numerical simulations as a function of the initial
atomic distance for �ðr0Þ ¼ 0. The numerical data were
obtained by analyzing the time evolution of the survival
probability of the initial state (�G) and by following the
dynamics of the total population in the harmonic potential
(�tot). The analytical predictions are in excellent agreement
with the numerical data. In addition, also for finite detun-
ing, the agreement between the numerical simulations and
the analytical prediction of Eq. (4) is very good. This can
be seen in Fig. 2(d) showing the rate as a function of �ðr0Þ
for two different initial separations. The slight asymmetry
of the numerical data about �ðr0Þ ¼ 0 stems from the fact
that the force between the Rydberg atoms is not constant
over the initial wave packet as assumed in our analytical
calculations. Interestingly, as demonstrated in Fig. 2(c),
our analytical analysis also gives reasonable agreement
when the assumption of an energetically isolated initial
state does not hold. At small spatial separations, the agree-
ment between numerical and analytical results is remark-
ably good. For larger r0=�r, the full solution shows that
the oscillator ground state gets coupled to higher levels via
the continuum. However, irrespective of this, the excitation
dynamics dramatically slows down with increasing me-
chanical force between the Rydberg atoms, and the exci-
tation rate is inversely proportional to it. Thus, although on
resonance, the Rydberg excitation becomes more and more
inefficient with increasing mechanical force. This effect
can be viewed as a dissipative excitation blockade induced
by decoherence due to atomic motion.

Dressing regime.—Let us finally analyze the situation, in
which the excitation laser is far detuned from the single
atom transition as well as from the antiblockade condition.
This is the regime of Rydberg dressing, where only a very
small fraction of the Rydberg wave function is admixed to
the ground state atoms [21,22,26]. The main effect of this
small admixture is that a pair of Rydberg dressed atoms
exhibits a distance-dependent energy shift. In the Born-
Oppenheimer approximation, the spectral function consists
of two � peaks at the eigenenergies of the r-dependent
electronic Hamiltonian—as in the antiblockade configura-
tion. The lowest eigenenergy corresponds to the dressing

potential and is given by ~!ðrÞ¼ ½�ðrÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðrÞþ�2

p �=2.
The dashed line in Fig. 3(a) depicts the interac-
tion energy of two dressed atoms in the motional state
�ðr; r0Þ, which is given by the convolution !Dðr0Þ ¼R
drj�ðr; r0Þj2 ~!ðrÞ. For a van der Waals interaction,

this energy exhibits a characteristic soft core with radius

rs ¼ ðC6=2j�jÞ1=6 and height V0 ¼ �4
0=8j�j3. Moreover,

the probability to be in the Rydberg pair state is given
by peeðr0Þ ¼

R
drjceeðr; r0Þj2, where ceeðr; r0Þ is the

coefficient of the Rydberg pair state in the eigenstate
j ~!ðrÞi ¼ cggðr; r0Þjggi þ ceeðr; r0Þjeei corresponding to

the eigenvalue ~!ðrÞ. This probability is shown as a func-
tion of r0 as a solid line in Fig. 3(c).

This picture is changed when the effects of atomic
motion are included in the description. Figure 3(b) shows
the spectral function j�ð!Þj2 obtained from Fano theory.
For r0 ! 1, one recovers the � peak at the eigenenergy of
the dressed system. However, as the soft-core radius rs is
approached, this peak broadens and the spectral weight is
spread over an energy interval largely exceeding V0.
Eventually, the broadening is so large that the spectral
function is almost flat and no pronounced structure is
visible in j�ð!Þj2. Moreover, as shown by the solid line
in Fig. 3(a), the peak position is shifted as compared to the
adiabatic energy of the dressed state. We show the data up
to the point where the peak height becomes smaller than its
width. The large broadening of the spectral function entails
that the energy of the Rydberg dressed state gets less and
less well defined with decreasing atomic separation. This
suggests the emergence of a dissipative dynamics for suf-
ficiently small interatomic distances. Comparing the exci-
tation probability to be in the Rydberg pair state in the limit
t ! 1, peeðr0Þ ¼

R
!max
!min

d!j�ð!Þj2 [the integration limits

(!min=max) are chosen such that they contain the entire

peak], we find that this probability actually coincides
with the results of the Born-Oppenheimer approximation
[see Fig. 3(c)].
Neglecting the effect of atomic motion, one thus obtains

the correct probability to be in the electronic states jggi or
jeei, however, without further information about the char-
acter of the excitation dynamics. This illustrates that the
inclusion of motional effects in the description of the

FIG. 3 (color online). (a) Distance dependence of the energy
(dashed line) of a Rydberg dressed atom pair !Dðr0Þ in the
motional state �ðr; r0Þ. (b) The spectral function j�ð!Þj2 of the
system shows a significant spectral broadening as the soft-core
radius is approached. The peak position of j�ð!Þj2 is shown as a
solid line in (a) up to the point where the width of the spectral
peak starts to exceed its height. (c) Distance dependence of the
probability to be in the Rydberg pair state for t ! 1. The data
set obtained from the Fano theory is given by the circles, while
the solid line shows the results from the Born-Oppenheimer
(BO) approximation. The numerical parameters used are � ¼
2�� 20 MHz, �0 ¼ 2�� 1 MHz, and rs=�r � 34:5.
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excitation process can be important even in the far off-
resonant regime of Rydberg dressing.
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[20] S. Wüster, A. Eisfeld, and J.M. Rost, Phys. Rev. Lett. 106,
153002 (2011).

[21] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104,
195302 (2010).

[22] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and
P. Zoller, Phys. Rev. Lett. 104, 223002 (2010).

[23] M. Mayle, I. Lesanovsky, and P. Schmelcher, J. Phys. B
43, 155003 (2010).

[24] J. Honer, H. Weimer, T. Pfau, and H. P. Büchler, Phys.
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