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We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism con-

straint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the

constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure

using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical

Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum

level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated

with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-

times resolve the singularity present in the classical theory inside black holes.

DOI: 10.1103/PhysRevLett.110.211301 PACS numbers: 04.70.Dy, 02.20.Sv, 04.60.Pp

Spherically symmetric gravity in vacuum is perhaps one
of the simplest symmetry reduced models to be studied
where there is spatial dependence of the variables. In par-
ticular, it includes the interesting case of having a black hole
present, with the challenge of its singularity. There have
been previous investigations of the quantization of vacuum
spherically symmetric gravity using complex Ashtekar var-
iables by Thiemann and Kastrup [1], traditional metric
variables by Kuchař [2], and using modern loop quantum
gravity techniques by Campiglia et al. [3] and Tibrewala
[4]. In all cases, the procedure started by choosing variables
adapted to spherical symmetry. The resulting model has a
diffeomorphism constraint associated with the symmetry
under rescalings of the radial coordinate and a Hamiltonian
constraint representing invariance under different foliations
of space-time. Thiemann and Kastrup [1] were the first to
complete the quantization of the model, remarkably, using
Ashtekar’s original complex variables. They noted that
essentially there is only one degree of freedom, the
Arnowitt-Deser-Misner (ADM) mass, that does not evolve
in time. Using traditional variables and a suitable set of
canonical transformations, Kuchař [2] reaches the same
result. Bojowald and Swiderski [5] studied the model in
terms of modern, real, Ashtekar variables and encountered
difficulties in performing a canonical quantization using
standard [6] loop quantum gravity techniques. Based on
that work, a loop quantization was achieved by Campiglia
et al. partially fixing the gauge, which eliminates the diffeo-
morphism constraint. Again, the only degree of freedom left
is theADMmass.Wave functions are functions of theADM
mass, and if one reconstructs the metric back from them,
one has a singularity where the classical theory had one, the
quantization being equivalent to the one found byThiemann
and Kastrup, and Kuchař. However, a later treatment using
the semiclassical equations resulting from loop quantum
gravity and covering both the interior and exterior of the
black hole suggested that the singularity could be

eliminated [7]. Studies of the quantization of black hole
interiors using the isometry with the Kantowski-Sachs
space-time also suggested that the singularity is eliminated
by loop quantum gravity [8].
In this Letter, we would like to show that one can

proceed to quantize these models without further gauge
fixing. In principle, that would be problematic because the
constraint algebra of general relativity, even in this simple
(1þ 1)-dimensional example, is not a Lie algebra and that
leads to problems implementing the Dirac quantization
procedure. We will show, however, that through a simple
rescaling of the Hamiltonian constraint without changing
the canonical variables, one ends up with a true Lie algebra
and can complete the quantization. In particular, one can
find exactly the space of physical states annihilated by the
constraints. Using the type of measures [9] common in
loop quantization, one can show that the singularity is
eliminated and one ends up with a regular space-time
that tunnels through where the classical singularity used
to be into another universe, akin to what happens classi-
cally in the Reissner-Nordström space-time but without
singularities. The quantum theory has more observables
than the ADM mass of the space-time, related to the fact
that at the Planck scale one has structure when one intro-
duces the types of measures one uses in loop quantum
gravity. These types of degrees of freedom associated to
the bulk suggest that it is possible to have loss of informa-
tion either via the region of high curvature that replaces the
singularity or through the bulk observables.
The treatment of spherically symmetric space-times

with Ashtekar-type variables was pioneered by Bengtsson
[10] and in more modern language discussed in detail by
Bojowald and Swiderski [5]. We will follow here the
notation of our previous paper [3], and we refer the reader
to them and to Bojowald and Swiderski for more details.
Using Ashtekar-like variables adapted to the symmetry

of the problem, one is left with two pairs of canonical
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variables E’, K’ and Ex, Kx that are related to the tradi-

tional canonical variables in spherical symmetry ds2 ¼
�2dx2 þ R2d�2 by � ¼ E’=

ffiffiffiffiffiffiffiffiffijExjp
, P� ¼ � ffiffiffiffiffiffiffiffiffijExjp

K’,

R ¼ ffiffiffiffiffiffiffiffiffijExjp
, and PR ¼ �2

ffiffiffiffiffiffiffiffiffijExjp
Kx � E’K’=

ffiffiffiffiffiffiffiffiffijExjp
where

P�, PR are the momenta canonically conjugate to� and R,
respectively, x is the radial coordinate, and d�2 ¼ d�2 þ
sin2�d’2. We are taking the Immirzi parameter equal to 1.
For most of the Letter, we will analyze the region with
Ex > 0, and we will therefore drop the absolute value signs
inside the square roots; if one wishes to analyze other
regions, the absolute value signs should be reinstated.

The total Hamiltonian density for the theory is given by

HT ¼ N

� ððExÞ0Þ2
8

ffiffiffiffiffiffi
Ex

p
E’

� E’

2
ffiffiffiffiffiffi
Ex

p � 2K’

ffiffiffiffiffiffi
Ex

p
Kx �

E’K2
’

2
ffiffiffiffiffiffi
Ex

p

�
ffiffiffiffiffiffi
Ex

p ðExÞ0ðE’Þ0
2ðE’Þ2 þ

ffiffiffiffiffiffi
Ex

p ðExÞ00
2E’

�

� Nr½ðExÞ0Kx � E’K0
’�: (1)

We proceed to rescale the Lagrange multipliers, Nold
r ¼

Nnew
r � 2NoldðK’

ffiffiffiffiffiffi
Ex

p Þ=ðExÞ0 and Nold ¼ NnewðExÞ0=E’,

and from now on we will drop the ‘‘new’’ subscripts.
This leads to a total Hamiltonian that, after an integration
by parts, reads

HT ¼
Z
dx

�
�N0

�
� ffiffiffiffiffiffi

Ex
p ð1þK2

’Þþ ððExÞ0Þ2 ffiffiffiffiffiffi
Ex

p
4ðE’Þ2 þ2GM

�

þNr½�ðExÞ0KxþE’K0
’�
�
: (2)

We are not including contributions at the boundary for
simplicity. The constant of integration 2GM is obtained
imposing the boundary conditions for the lapse. The dis-
cussion in detail is present in Ref. [2]. A remarkable fact is
that this rescaling of the constraints makes the Hamiltonian
constraint have an Abelian algebra with itself and the usual
algebra with the diffeomorphism constraint. We had
already noted this in Ref. [3], but after gauge fixing the
diffeomorphism constraint, here we point out that it is true
even without gauge fixing the diffeomorphism constraint.
We now proceed to quantize. We start by recalling the

basis of spin network states in one dimension (see Ref. [3]
for details). One has graphs g consisting of a collection of
edges ej connecting the vertices vj. It is natural to asso-

ciate the variable Kx with edges in the graph and the
variable K’ with vertices of the graph. For bookkeeping

purposes, we will associate each edge with the vertex to its
left. One then constructs a standard holonomy for Kx and a
‘‘point holonomy’’ for K’ (since it behaves as a scalar),

Tg; ~k; ~�ðKx; K’Þ ¼ hKx; K’jg; ~k; ~�i ¼ Y

ej2g

exp

�
i

2
kj
Z

ej

KxðxÞdx
�Y

vj2g

exp

�
i

2
�jK’ðvjÞ

�
(3)

with ej the edges of the spin network, g and vj its vertices,
and the integer kj is the ‘‘color’’ associated with the edge
ej, and the real number �j the ‘‘color’’ associated with the
vertex vj. On these states, the triads act multiplicatively,

ÊxðxÞTg; ~k; ~�ðKx; K’Þ ¼ ‘2PlanckkiðxÞTg; ~k; ~�ðKx; K’Þ; (4)

Ê’ðxÞTg; ~k; ~�ðKx; K’Þ
¼ ‘2Planck

X

vi2g

�ðx� xðviÞÞ�iTg; ~k; ~�ðKx;K’Þ; (5)

where kiðxÞ is the color of the edge including the point x. If
the latter is at a vertex, it is the edge to the right of it. xðviÞ
is the position of the vertex vi.

To deal with the Hamiltonian constraint, we follow the
steps usual in loop quantum cosmology and replace K’ !
sinð�K’Þ=� in order to have a well-defined operator on the

kinematical Hilbert space (some authors choose � ¼ 1
[6]). We also choose a factor ordering, and it is convenient
to rescale H and take a square root to simplify solving it,

ĤðNÞ¼
Z
dxNðxÞ

0

@2

8
<

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Êx

p
½1þsin2ð�K̂’Þ=�2��2GM

r 9
=

;Ê’

�
ffiffiffiffiffiffi
Êx4

p
ðÊxÞ0

1

A; (6)

and the quantum constraint is also Abelian free of anoma-
lies. We have defined the action of the relevant operators
involved in the constraint on the Tg; ~k; ~� basis. Let us recall

that K’ is not well defined as an operator, only its expo-

nentiation, so we had to polymerize with � the polymer-
ization parameter. Acting on a quantum state, we have that

ĤðNÞTg; ~k; ~�ðKx;K’Þ

¼ X

vi2g

NðviÞðki‘2PlanckÞ1=4
2

642

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin2ð�K’ðviÞÞ
�2

� 2GM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki‘

2
Planck

q

vuuut ‘2Planck�i � ðki � ki�1Þ‘2Planck

3

75Tg; ~k; ~�ðKx; K’Þ: (7)
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Seeking, for simplicity, a solution of the form

�ðK’;Kx;g; ~k;MÞ¼P
v2g

P
�ðvÞTg; ~k; ~�ðKx;K’Þ�½�ðvÞ;M�

(one could also consider superpositions in ~k), the equation

ĤðNÞ� ¼ 0 can be solved and leads to

�ðK’;Kx;g; ~k;MÞ
¼ expðfðK’;g; ~k;MÞÞ�ej2gexp

�
i

2
kj
Z

ej

KxðxÞdx
�
; (8)

with f given by f ¼ P
vj2g � ði=2Þ�Kjmj�

F½sinðð�K’ðvjÞ; imjÞ�, with �Kj ¼ K’ðvjÞ � K’ðvj�1Þ,
mj¼½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2GM=

ffiffiffiffiffi
kj

p
‘Planck

q
��1, and Fð�;mÞ¼R�

0 ð1�
m2sin2tÞ�1=2dt the Jacobi (sometimes also known as
Legendre) elliptic function of the first kind. Although mj

is purely imaginary inside the horizon, one can show that
expðfÞ is a pure phase factor for any value of kj, no matter

if it corresponds to the black hole interior or not.
The above solution of the Hamiltonian constraint is not

invariant under diffeomorphisms. That can be readily cor-
rected via standard group averaging in which one super-
poses a family of states related by diffeomorphisms [11].
For reasons of space, we do not show it explicitly since the
construction is standard. One ends up with states that are
superpositions of spin networks with vertices in all pos-
sible positions along the radial line, preserving the order of
them (this last point will play a crucial role in the appear-
ance of new quantum observables). In higher dimensions,
such order could be associated with the diffeoinvariant
nontrivial knotting of the spin networks. The resulting state
is a functional of Kx, K’ labeled by a diffeomorphism-

related class of graphs ~g, the colors for each edge ~k, and the

ADM mass M. We denote them as j ~k; ~gi, omitting the
dependence on M for simplicity. These vectors define a
basis for the physical space of states H phys.

The graph g is based on an integer number V of vertices
located at xðv1Þ; . . . ; xðvVÞ. Since the elements of the basis
of the states of H phys have a well-defined number of

vertices, one can construct an Dirac observable V̂ that

acting on j ~k; ~gi has as eigenvalue the integer number V.
This is an observable that has no classical counterpart.

Even more interesting is the observable associated with

the sequence of monotonically growing integers ~k that
characterize the sequence of characteristic radii of black
holes. The Hamiltonian constraint does not change the

values of ~k and neither does the diffeomorphism constraint.
In the classical theory, the radial coordinate Ex is diffeo-
morphic to x2, but since it can only be a monotonically
growing function, this restricts the types of transformations
allowed. To yield a nonmonotonic function, one would
have to consider diffeomorphisms that are not invertible.
That restriction is what in the quantum theory ends up
yielding a new observable. If one were in more than one
dimension, there are similar, more complex restrictions
arising from the knotting of spin networks.

An operator associated with the sequence ~k that is a
Dirac observable acting on the physical space of states is

OðzÞ with z2½0;1�, ÔðzÞj ~k; ~giphys ¼ ‘2PlanckkIntðVzÞj ~k; ~giphys,
where IntðVzÞ is the integer part of Vz, and V is the number
of vertices. These quantum operators characterize the
quantum geometry, and as we shall see, they may have
profound physical implications. On the physical Hilbert
space H phys, M is a Dirac observable but ExðxÞ is not.

However, given an arbitrary monotonic function from
the interval of the radial direction we are studying (for
instance the origin and an asymptotic boundary ½0; xþ�) to
the interval [0, 1], which we call zðxÞ, one has that

ÊxðxÞj ~k; ~giphys ¼ ÔðzðxÞÞj ~k; ~giphys. The function zðxÞ char-
acterizes the gauge freedom in Ex. Recall that the eigen-

values of Êx in the kinematical Hilbert space can only take
the values ‘2Planckki. Another way of understanding this is

that we are defining an evolving constant of the motion
associated with Ex that is a function of a ‘‘parameter’’

given by the function zðxÞ and the observable ÔðzÞ.
In a similar fashion, one can define evolving constants of

the motion that represent the metric of space-time acting on
H phys. The parameters of the evolving constant are K’

subject to suitable boundary conditions and zðxÞ. For instance,
the classical expression of the gtx component of the metric is

gtx ¼ gxxNr ¼ � ðExÞ0K’

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

’ � 2GMffiffiffiffi
Ex

p
q ; (9)

with similar expressions for gtt and gxx. This can be
derived choosing a gauge in which K’ and Ex are given

functions of space and preserving the gauge fixing con-
ditions in time through the determination of the lapse and
the shift. For instance, this would lead to the usual form of
the Schwarzschild metric, provided one chooses K0

’ ¼ 0

and Ex
0 ¼ x2. We can proceed to promote it to a quantum

operator on Hphys in terms of ÔðzÞ, M̂ and parametrized by

K’ and zðxÞ (the expression needs to be made well defined

first by introducing holonomies),

ĝtx ¼ � ðÊxÞ0 sinð�K’Þ
2�

ffiffiffiffiffiffi
Êx

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ðK’Þ

�2 � 2GM̂ffiffiffiffi
Êx

p
r : (10)

The square root that appears in ĝtx leads to the following
inequality in order to get a self-adjoint operator (notice that

there are no factor ordering issues): 1þ ðsin�K’=�Þ2 �
ð2GM=

ffiffiffiffiffiffiffiffiffiffiffi
Ex=�

p Þ � 0. The most unfavorable point is when
the eigenvalues of Ex become small. The most favorable
gauge choice from the point of view of keeping the expres-
sion positive at that point is K’;0 ¼ �=ð2�Þ, where K’;0 is

K’ evaluated at x ¼ 0 (since Ex is monotonic, the worst

case happens at x ¼ 0). Therefore, the gauge condition for
the square root that appears in the metric to be real and
therefore the metric self-adjoint is, in terms of the eigen-

values of Êx, given by
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k0 >

�
2GM

‘Planckð1þ 1
�2Þ

�
2
:

As a consequence, small values of k0 are excluded in order
to have a self-adjoint metric operator, and as a conse-
quence, the singularity is avoided. The region exterior to
the horizon is covered for any gauge K’ since the last term

in the first inequality is less or equal to 1 outside the
horizon. Notice that there exist gauge choices that would
make the metric singular. Those correspond to coordinate
singularities and loop quantum gravity correctly does not
eliminate them.

Although these general considerations about the geome-
try are true for any state, obviously not all states lead to
semiclassical geometries. To begin with, the operators
corresponding to the metric are distributional, having sup-
port only at vertices of the spin net. One can envision them
approximating smooth geometries for spin nets with
densely packed vertices and some additional conditions:
(a) One would need to consider a superposition of ADM
masses with a weight �ðMÞ that are peaked functions
around a given value M0; (b) one also needs to require
some smoothness in the radial coordinate by limiting the
jumps of the eigenvalues from a vertex to the next, i.e.,
�ki < �0 with�0 controlling the level of smoothness. One
could, in particular, approximate a smooth Schwarzschild
geometry with quantum corrections. Also notice that for
simplicitywe have also kept the discussion in terms of states

that are eigenstates of ÔðzÞ. In reality, one will have states

that will involve superpositions of values of ~k as well.
The analysis can be extended to the interval ½�xþ; xþ�

with a trivial extension of OðzÞ to z 2 ½�1; 1�. The expec-
tation value of the determinant of the space-time metric can
be explicitly calculated in a suitable gauge, and it goes
through a maximum value and starts decreasing for nega-
tive values of x. One can view this as a generalization of the
Kruskal extension including a new region that tunnels
through the singularity.

We have performed a loop quantization of the vacuum
spherically symmetric space-times. Apart from using var-
iables adapted to spherical symmetry, we did not perform
any additional gauge fixing. Through a rescaling of the
Hamiltonian constraint, the constraint algebra was turned
into a Lie algebra. We were able to exactly solve the
constraints and find the space of physical states. We
encountered that in addition to the ADM mass and its
canonically conjugate momentum, other Dirac observables
arose in the quantum theory associated with the bulk of the
space-time. The metric of the space-time can be analyzed
as an operator in the physical space of state viewing it as an
evolving constant of the motion written in terms of the
Dirac observables and free parameters that represent the
coordinate freedom. One sees that the singularity that
arises in the classical theory is eliminated and is replaced
by a region of high curvature through which the space-time
could be extended, yielding a global structure similar to

that of the Reissner-Nordström space-time but without
singularities, as had been anticipated in a previous treat-
ment using the effective semiclassical theory [7].
The existence of the new quantum observables and the

associated degrees of freedom may have some relevance
for the recent discussion of ‘‘firewalls’’ in black hole
evaporation. Almheiri et al. [12] (and earlier, Braunstein
et al. [13]) showed that in order to preserve the unitarity of
the Smatrix during black hole evaporation, drastic changes
in the usual picture were needed, like surrounding the black
hole with a firewall. This follows from fundamental
hypotheses, like the existence of a unitary S matrix that
describes the evolution of the incoming pure state that
forms the black hole and the outgoing Hawking radiation.
From the perspective of our analysis, this hypothesis is not
obvious since in principle there could be part of the infor-
mation lost when falling into the black hole interior tunnel-
ing into another region or into the new local degrees of
freedom we discussed. Our analysis is at the moment lim-
ited to the vacuum case. However, from the form of the
Hamiltonian constraint coupled to matter, one can see that
the bulk observables persist in that case, suggesting that the
analysis of the information issue made could be carried out
explicitly in the case of an evaporating black hole.
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