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How much information can a transmitted physical system fundamentally communicate? We introduce

the principle of quantum information causality, which states the maximum amount of quantum informa-

tion that a quantum system can communicate as a function of its dimension, independently of any

previously shared quantum physical resources. We present a new quantum information task, whose

success probability is upper bounded by the new principle, and show that an optimal strategy to perform it

combines the quantum teleportation and superdense coding protocols with a task that has classical inputs.

DOI: 10.1103/PhysRevLett.110.210402 PACS numbers: 03.65.Ta, 03.67.Ac, 03.67.Bg, 03.67.Hk

Quantum information science studies how information
can fundamentally be encoded, processed, and communi-
cated via systems described by quantum physics [1].
Interesting features of information arise with this approach.
The no-cloning theorem states that unknown quantum
states cannot be copied perfectly [2,3]. Unknown quantum
states can be teleported [4]. Two classical bits can be
encoded in one qubit via the superdense coding protocol
[5]. Fundamentally secure cryptography can be achieved
with quantum information protocols [6–8]. Many of the
quantum information protocols are possible due to quan-
tum entanglement: two systems are entangled if their
global quantum state cannot be expressed as a convex
combination of individual states in a tensor product form.
Another interesting property is quantum nonlocality, that
is, measurement outcomes of separate systems can exhibit
correlations that cannot be described by local classical
models [9,10].

Since the value of quantum correlations does not vary
with the time difference of the measurements and the
distance between the systems, one could think that they
can be used to communicate arbitrarily fast messages.
However, quantum physics obeys the no-signaling princi-
ple. No-signaling says that a measurement outcome
obtained by a party (Bob) does not provide him with any
information about what measurement is performed by
another party (Alice) at a distant location, despite any
nonlocal correlations previously shared by them [11].

If any information that Alice has is to be learned by Bob,
no-signaling requires that a physical system sharing corre-
lations with Alice’s system must be transmitted to him.
Thus, an interesting question to ask is, how much infor-
mation can a physical system fundamentally communi-
cate? In the scenario in which Alice has a classical
random variable X, she encodes its value in a quantum
state that she sends Bob and Bob applies a quantum
measurement on the received state in order to obtain a
classical random variable Y as the output, the Holevo
theorem [12] provides an upper bound on the classical

mutual information between X and Y. In the scenario in
which Alice sends Bob m classical bits, information cau-
sality states that the increase of the mutual information
between Bob’s and Alice’s systems is upper bounded bym,
independently of any no-signaling physical resources that
Alice and Bob previously shared [13]. Information cau-
sality has important implications for the set of quantum
correlations [13–17]. For example, it implies the Cirel’son
bound [18], while the no-signaling principle does not [19].
Here we consider the scenario in which Bob receives a

quantum system from Alice, who possibly shares quantum
correlations with another party, Charlie, and ask the ques-
tion, howmuch quantum information can Bob obtain about
Alice’s or Charlie’s data [20]? We introduce a new princi-
ple that we call quantum information causality, which
states that the maximum amount of quantum information
that a quantum system can communicate is limited by its
dimension, independently of any quantum physical resour-
ces previously shared by the communicating parties.
Namely, the principle says that the increase of the quantum
mutual information between Bob’s and Charlie’s systems,
after a quantum system of m qubits is transmitted from
Alice to Bob, is upper bounded by 2m.
In order to illustrate quantum information causality, we

introduce a new quantum task that we call the quantum
information causality (QIC) game (see Fig. 1).
The QIC game (version I).—Initially, Alice and Bob may

share an arbitrary entangled state. However, they do not
share any correlations with Charlie. Let A0 and B denote
the quantum systems at Alice’s and Bob’s locations,

FIG. 1 (color online). The QIC game (version I).
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respectively. Charlie prepares the qubits Aj and Cj in the

singlet state j��i, for j ¼ 0; 1; . . . ; n� 1. Charlie keeps
the system C � C0C1 . . .Cn�1 and sends Alice the system
A � A0A1 . . .An�1. Charlie generates a random integer
k 2 f0; 1; . . . ; n� 1g and gives it to Bob. Bob gives
Charlie a qubit Bk, whose joint state with the qubit Ck,
denoted as !k, must be as close as possible to the singlet.
Alice and Bob may play any strategy allowed by quantum
physics as long as the following constraint is satisfied: their
communication is limited to a single message from Alice
to Bob only, encoded in a quantum system T of m< n
qubits, with no extra classical communication allowed. Let
B0 denote the joint system BT after Bob’s quantum opera-
tions. In general, the qubit Bk is obtained by Bob from B0.
Charlie applies a Bell measurement (BM) on the joint
system CkBk. Alice and Bob win the game if Charlie
obtains the outcome corresponding to the singlet. The
success probability is

P � 1

n

Xn�1

k¼0

h��j!kj��i: (1)

In version II of the QIC game, Charlie does not prepare
singlets. Instead, Charlie prepares n qubits in the pure
states fjc jign�1

j¼0 that he gives Alice. Bob outputs a qubit

Bk in the state �k. Charlie measures Bk in the orthonormal
basis fjc ki; jc?

k ig. Alice and Bob win the game if

Charlie’s outcome corresponds to the state jc ki.
This version is equivalent to version I and its success
probability p satisfies p ¼ ð1þ 2PÞ=3 (see details in the
Supplemental Material [23]). For convenience, in what
follows we only refer to version I of the QIC game, unless
otherwise stated.

Consider the following naive strategy to play the QIC
game. Alice simply sends Bob m of the n received qubits
from Charlie without applying any operations on these.
Alice and Bob previously agree on which qubits Alice
would send Bob, for example, those with index 0 � j <
m. If Bob receives from Charlie a number k < m, he out-
puts the correct state; in this case, h��j!kj��i ¼ 1.
However, if m � k, Bob does not have the correct state;
hence, he can only give Charlie a fixed state, say j0i; in this
case, h��j!kj��i ¼ 1=4. Thus, this strategy succeeds
with probability PN ¼ ð1þ 3m=nÞ=4, where the label N
stands for naive. There are other strategies that achieve
success probabilities higher than PN. However, it turns out
that in general, P< 1, if m< n. We show that this follows
from quantum information causality.

The principle of quantum information causality states an
upper bound on the amount of quantum information thatm
qubits can communicate:

�IðC:BÞ � 2m; (2)

where �IðC:BÞ � IðC:B0Þ � IðC:BÞ is Bob’s gain of quan-
tum information about C, IðC:BÞ � SðCÞ þ SðBÞ � SðCBÞ

is the quantum mutual information [1] between C and B,
SðCÞ is the von Neumann entropy [1] of C, etc., B0 denotes
the joint system BT after Bob’s quantum operations. Since
the quantum mutual information quantifies the total corre-
lations between two quantum systems [24–26], we con-
sider �IðC:BÞ to be a good measure for the communicated
quantum information [27].
The proof is very simple. By definition, IðC:BTÞ ¼

SðCÞ þ SðBTÞ � SðCBTÞ. Subadditivity [29] states that
SðBTÞ � SðBÞ þ SðTÞ. The triangle inequality [30],
jSðCBÞ � SðTÞj � SðCBTÞ, implies that �SðCBTÞ �
SðTÞ � SðCBÞ. Hence, we have that IðC:BTÞ � 2SðTÞ þ
IðC:BÞ. The data-processing inequality states that local
operations cannot increase the quantum mutual informa-
tion [1]. Thus, IðC:B0Þ � IðC:BTÞ, which implies that
IðC:B0Þ � 2SðTÞ þ IðC:BÞ. Therefore, we obtain that
�IðC:BÞ � 2SðTÞ. Finally, since SðTÞ � log2ðdimTÞ, the
quantum information that T can communicate is limited by
its dimension. Therefore, if T is a system of m qubits,
Eq. (2) follows because in this case SðTÞ � m.
Achievability of equality in Eq. (2) requires that T is
maximally entangled with C (see details in the
Supplemental Material [23]). It is easy to see that the naive
strategy in the QIC game saturates this bound.
We notice that in the previous proof we did not require to

mention Alice’s system. This means that Eq. (2) is valid
independently of how much entanglement Alice and Bob
share. This also means that Eq. (2) is valid too if we
consider that Alice and Charlie are actually the same party.
Thus, quantum information causality shows that the maxi-
mum possible increase of the quantum mutual information
between Charlie’s and Bob’s systems is only a function of
the dimension of the system T received by Bob, indepen-
dently of whether it is Alice or Charlie who sends Bob the
system T and of how much entanglement Bob shares
with them.
If the transmitted system T is classical, equality in

Eq. (2) cannot be achieved. Information causality states
that in this case, �IðC:BÞ � m, where C is a classical
system, B is a quantum system, and IðC:BÞ denotes their
quantum mutual information [13]. In fact, this bound is
valid even if both systemsC and B are quantum (see details
in the Supplemental Material [23]).
As stated above, quantum information causality follows

from three properties of the von Neumann entropy: subad-
ditivity, the data-processing, and the triangle inequalities.
The concept of entropy in mathematical frameworks for
general probabilistic theories [31–33] and its implication
for information causality have been recently investigated
[34–37]. Particularly, it has been shown that a physical
condition on the measure of entropy implies subadditivity
and the data-processing inequality, and hence that informa-
tion causality follows from this condition [36]. It would be
interesting to investigate whether physically sensible defi-
nitions of entropy for more general probabilistic theories
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satisfy the three mentioned properties, and hence a gener-
alized version of quantum information causality. A different
version of information causality in more general probabi-
listic theories has been considered in Ref. [38].

Quantum information causality implies an upper bound
on the success probability in the QIC game:

P � P0; (3)

where we define P0 to be the maximum solution of the
equation hðP0Þ þ ð1� P0Þlog23 ¼ 2ð1�m=nÞ and hðxÞ ¼
�xlog2x� ð1� xÞlog2ð1� xÞ denotes the binary entropy.
The value of P0 is a strictly increasing function of the ratio
m=n, achieving P0 ¼ 1=4 if m ¼ 0 and P0 ¼ 1 if m ¼ n.
Therefore, we have that P< 1 if m< n. A plot with some
values of P0 and the complete proof of Eq. (3) are given in
the Supplemental Material [23]. Below we present a sketch
of the proof.

First, we notice that for any strategy that Alice and Bob
may play that achieves success probability P, there exists a
covariant strategy achieving the same value of P that Alice
and Bob can perform. By covariance, we mean the follow-
ing: in version II of the QIC game, if, when Alice’s input
qubit Ak is in the state jc ki, Bob’s output qubit state is �k,
then, when Ak is in the state Ujc ki, Bob’s output state is
U�kU

y, for any qubit state jc ki 2 C2 and unitary opera-
tion U 2 SUð2Þ. Recall that k is the number that Charlie
gives Bob. Therefore, without loss of generality, we con-
sider that a covariant strategy is implemented. This means
that the Bloch sphere of the qubit Ak is contracted uni-
formly and output in the qubit Bk. In version I, this means
that the joint system CkBk is transformed into the state

!k ¼ �k�
� þ 1� �k

3
ð�þ þ�þ þ��Þ; (4)

where 1=4 � �k � 1 and�� denotes j��ih��j, etc. That
is, the depolarizing map [1] is applied to the qubit Ak, and
output by Bob in the qubit Bk.

Then, we use the data-processing inequality and the fact
that the qubits Cj and Cj0 are in a product state for every

j � j0 in order to show that
P

n�1
k¼0 IðCk:BkÞ � IðC:B0Þ. We

notice that since Charlie’s and Bob’s systems are initially
uncorrelated, Eq. (2) reduces to IðC:B0Þ � 2m. Thus, we
have that

P
n�1
k¼0 IðCk:BkÞ � 2m. From this inequality and

the concavity property of the von Neumann entropy, we
obtain an upper bound on

P
n�1
k¼0 �k=n, which from Eqs. (1)

and (4) equals P.
Below we show that an optimal strategy to play the QIC

game reduces to an optimal strategy to perform the follow-
ing task.

The IC-2 game.—Alice is given random numbers xj �
ðx0j ; x1j Þ, where x0j , x1j 2 f0; 1g, for j ¼ 0; 1; . . . ; n� 1. Bob

is given a random value of k ¼ 0; 1; . . . ; n� 1. The game’s
goal is that Bob outputs xk. Alice and Bob can perform any
strategy allowed by quantum physics with the only

condition that communication is limited to a single mes-
sage of 2m< 2n bits from Alice to Bob. In particular,
Alice and Bob may share an arbitrary entangled state.
Let yk � ðy0k; y1kÞ be Bob’s output, where y0k, y

1
k 2 f0; 1g.

We define the success probability as

Q � 1

n

Xn�1

k¼0

Pðyk ¼ xkÞ: (5)

We call this task the IC-2 game. The version we call the
IC-1 game, in which the inputs and output are one bit
values and Alice’s message is of m< n bits, was consid-
ered in the Letter that introduced information causality
[13]. The strategies to play the IC-1 game in which no
entanglement is used were first considered by Wiesner in
1983 with the name of conjugate coding [39]. They were
investigated further in 2002 with the name of random
access codes [40]. The most general quantum strategy, in
which Alice and Bob share an arbitrary entangled state, is
called an entanglement-assisted random access code [41].
Let Qmax be the maximum value of Q over all possible

strategies to play the IC-2 game. Below we show that
P � Qmax.
Consider the following strategy to play the IC-2 game.

Alice and Bob initially share a singlet state in the qubits
Aj and Cj, for j ¼ 0; 1; . . . ; n� 1. Alice has the system

A � A0A1 . . .An�1, while Bob has the system C �
C0C1 . . .Cn�1. Alice applies the unitary operation �xj on

the qubit Aj, for every j, where �0;0 � I is the identity

operator acting onC2 and�0;1 � �1,�1;0 � �2,�1;1��3

are the Pauli matrices. Then, Alice and Bob play the QIC
game, applying some operation on the input system A,
which includes a message of m qubits from Alice to Bob.
However, instead of sending these m qubits directly, Alice
teleports [4] them to Bob. Thus, communication consists of
2m bits only, as required. At this stage, Bob does not apply
any operations on the system C, which is consistent with
the QIC game. As previously indicated, we can consider
that in a general strategy in the QIC game the depolarizing
map is applied to the qubit Ak. Therefore, Bob outputs the
qubit Bk in the joint state �k ¼ ðI � �xkÞ!kðI � �xkÞ with
the qubit Ck, where !k is given by Eq. (4). Then, Bob
measures �k in the Bell basis. Bob learns the encoded
value xk with probability �k. Thus, from Eq. (5) we have
that Q ¼ P

n�1
k¼0 �k=n, which equals P, as we can see from

Eqs. (1) and (4). Since by definition Q � Qmax, we have
that P � Qmax, as claimed.
Consider the following class of strategies to play the

QIC game that combine quantum teleportation [4], super-
dense coding [5], and the IC-2 game.
Teleportation strategies in the QIC game.—Alice and

Bob share a singlet state in the qubits A0
j, at Alice’s site, and

Bj, at Bob’s site, for j ¼ 0; 1; . . . ; n� 1. Alice applies a

Bell measurement on her qubits AjA
0
j and obtains the two
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bit outcome xj � ðx0j ; x1j Þ. Thus, the state of the qubit Aj is

teleported to Bob’s qubit Bj, up to the Pauli error �xj . This

means that the joint state of the system CjBj transforms

into one of the four Bell states, according to the value of xj.

Alice and Bob play the IC-2 game with Alice’s and Bob’s
inputs being x � ðx0; x1; . . . ; xn�1Þ and k, respectively.
However, instead of sending Bob the 2m-bits message
directly, Alice encodes it in m qubits via superdense cod-
ing. Bob receives the m qubits and decodes the correct
2m-bits message, which he inputs to his part of the IC-2
game. Bob outputs the two bit number yk � ðy0k; y1kÞ and
applies the Pauli correction operation �yk on the qubit Bk,

which then he outputs and gives to Charlie. If yk ¼ xk, the
output state !k of the system CkBk is the singlet; other-
wise, we have that h��j!kj��i ¼ 0. Thus, from the
definition of P, Eq. (1), we see that P ¼ Q, where Q is
given by Eq. (5).

Therefore, since P � Qmax, we see that an optimal
strategy in the QIC game is a teleportation strategy in
which the IC-2 game is played achieving the maximum
success probability Q ¼ Qmax. We have obtained an upper
bound on Q for a particular class of strategies in the case
m ¼ 1 (see Supplemental Material [23]).

The best strategy that we have found to play the QIC
game in the casem ¼ 1 is a teleportation strategy in which
the IC-2 game is played with two equivalent and indepen-
dent protocols in the IC-1 game. In both protocols Bob
inputs the number k, while Alice inputs the bits fx0j gn�1

j¼0 in

the first protocol and the bits fx1j gn�1
j¼0 in the second one. If

Bob outputs the correct value of x0k with probability q in the
first protocol, and similarly, he outputs the correct value of
x1k with probability q in the second protocol, for any k, then
the success probability in the IC-2 game is Q ¼ q2. The

maximum value of q that has been shown [36,41] is q ¼
ð1þ n�1=2Þ=2. Explicit strategies to achieve this value are
given by entanglement-assisted random access codes in the
case in which n ¼ 2r3l and r, l are non-negative integers
[41]. With this value ofQ we achieve a success probability

in the QIC game of PT ¼ ð1þ n�1=2Þ2=4, where the label
T stands for teleportation.

Here we have introduced the quantum information cau-
sality principle as satisfaction of an upper bound on the
quantum information that Bob can gain about Charlie’s
data as a function of the number of qubits m that Alice
(who shares correlations with Charlie) sends Bob, Eq. (2).
We have presented a new quantum information task, the
QIC game, whose success probability is limited by quan-
tum information causality, Eq. (3). We have shown that an
optimal strategy to play the QIC game combines the quan-
tum teleportation and the quantum superdense coding pro-
tocols, with an optimal strategy to perform another task
that has classical inputs, the IC-2 game. An optimal strat-
egy in the IC-2 game remains as an interesting open
problem.
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